• Title/Summary/Keyword: Air Ejector System

Search Result 67, Processing Time 0.019 seconds

Development of the Scramjet engine Test Facility(SeTF) in Korea Aerospace Research Institute (한국항공우주연구원 스크램제트 엔진 시험설비의 개발)

  • Lee, Yang-Ji;Kang, Sang-Hun;Oh, Joong-Hwan;Yang, Soo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.3
    • /
    • pp.69-78
    • /
    • 2010
  • Korea Aerospace Research Institute started on design and development of a hypersonic air-breathing engine test facility from 2000 and completed the test facility installation in July 2009. This facility, designated as Scramjet engine test facility(SeTF), is a blow-down type high enthalpy wind tunnel which has a pressurized air supply system, air heater system, free-jet test chamber, fuel supply system, facility control/measurement system and exhaust system. In this paper, details of the specifications, and configuration of the SeTF are described. For verifying characteristics of the SeTF, wind tunnel tests are now on progress and some of the data are also described.

Fundamental Experiment of Underwater Ram-jet by PIV Measurement (PIV에 의한 수중램제트의 기초실험)

  • 김춘식
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.165-170
    • /
    • 2000
  • A fundamental experimental study for a substitute proposal to super-speed craft propulsion system called underwater ram-jet propulsion by high pressure air ejection as driving force was investigated. for basic study of effect of ram-jet propulsion performances ismple underwater ram-jet flow field was established and PIV(Particle Image Velocimetry) method was adopted to analyse the jet-induced flow appearing at ram intake mixing chamber and nozzle. Some flow dynamics relating to the high-speed ejector effect were discussed for the basic understanding for the ram-jet propulsion principle.

  • PDF

Development of Complex Module Device for Odor Reduction in Sewage

  • KIM, Young-Do;JEONG, Tae-Hwan;Kim, Su-Hye;KWON, Woo-Taeg
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.5 no.4
    • /
    • pp.51-56
    • /
    • 2022
  • Purpose: By applying an ultrasonic mechanical device to the liquid fertilizer storage in the pig dropping treatment plant, the initial odor of the odor source is reduced, and the air dilution drainage of the complex odor is fundamentally recognized to facilitate odor treatment on the mechanical and chemical biological treatment devices at the rear. Research design, data and methodology: The odor concentration on the site boundary was measured to confirm the state of reduction. In order to prevent the spread of odor from the collection of the pig dropping treatment plant, it was measured by installing an ultrasonic generator inside the installation wall after installing the sealing wall. Results: The average value of the March and April measurement data remained close to neutral at 8.2 after 8.6 treatment before pH treatment, decreased 97.3% from 462 mg/L before SS treatment to 10.5 mg/L after treatment, and the composite odor was reduced by 85% from 20 to 3 before treatment. It was confirmed that ammonia (NH3) was reduced by 99% from 5.8 ppm to 0.09 ppm, and general bacteria were also reduced by 99% from 3,200 CFU/mL to 57 CFU/mL Conclusion: Applying the ultrasonic air ejector hybrid system and zigzag air complex module development product to resource circulation centers or sewage treatment facilities is thought to reduce inconvenience to residents due to odors caused.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2015 (설비공학회 분야의 최근 연구 동향 : 2015년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.6
    • /
    • pp.256-268
    • /
    • 2016
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2015. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering were carried out in the areas of flow, heat and mass transfer, cooling and heating, and air-conditioning, the renewable energy system and the flow inside building rooms. Research issues dealing with air-conditioning machines and fire and exhausting smoke were reduced. CFD seems to be spreading to more research areas. (2) Research works on heat transfer area were carried out in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the economic analysis of GHG emission, micro channel heat exchanger, effect of rib angle on thermal performance, the airside performance of fin-and-tube heat exchangers, theoretical analysis of a rotary heat exchanger, heat exchanger in a cryogenic environment, the performance of a cross-flow-type, indirect evaporative cooler made of paper/plastic film. In the area of pool boiling and condensing, the bubble jet loop heat pipe was studied. In the area of industrial heat exchangers, researches were performed on fin-tube heat exchanger, KSTAR PFC and vacuum vessel at baking phase, the performance of small-sized dehumidification rotor, design of gas-injection port of an asymmetric scroll compressor, effect of slot discharge-angle change on exhaust efficiency of range hood system with air curtain. (3) In the field of refrigeration, various studies were carried in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, a cold-climate heat pump system, $CO_2$ cascade systems, ejector cycles and a PCM-based continuous heating system were investigated. In the alternative refrigeration/energy system category, a polymer adsorption heat pump, an alcohol absorption heat pump and a desiccant-based hybrid refrigeration system were investigated. In the system control category, turbo-refrigerator capacity controls and an absorption chiller fault diagnostics were investigated. (4) In building mechanical system research fields, eighteen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the user and location awareness technology applied dimming lighting control system, the lighting performance evaluation for light-shelves, the improvement evaluation of air quality through analysis of ventilation efficiency and the evaluation of airtightness of sliding and LS window systems. The subjects of building energy were worked on the energy saving estimation of existing buildings, the developing model to predict heating energy usage in domestic city area and the performance evaluation of cooling applied with economizer control. The studies were also performed related to the experimental measurement of weight variation and thermal conductivity in polyurethane foam, the development of flame spread prevention system for sandwich panels, the utilization of heat from waste-incineration facility in large-scale horticultural facilities.

Internal Flow Aerodynamic Test of a Mach 5 Scramjet Engine (마하 5 스크램젯 엔진의 내부 유동 공력 시험)

  • Yang, In-Young;Lee, Yang-Ji;Kim, Young-Moon;Lee, Kyung-Jae;Kang, Sang-Hoon;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.584-587
    • /
    • 2011
  • An internal flow aerodynamic test was performed for a Mach 5 scramjet engine. The test was done without fuel injection, as a preliminary test for the combustion test. Test engine is an engineering model with intake cross-section of $70mm{\times}200mm$ and total length of 1.7m. Test facility is a blowdown-type, high enthalpy, hypersonic facility. 19 pressures were measured through the holes on the model surface along the engine internal flow passage. It was found that the facility start is possible, and also supersonic flow is maintained inside the engine.

  • PDF

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2016 (설비공학 분야의 최근 연구 동향 : 2016년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.6
    • /
    • pp.327-340
    • /
    • 2017
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2016. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of flow, heat and mass transfer, the reduction of pollutant exhaust gas, cooling and heating, the renewable energy system and the flow around buildings. CFD schemes were used more for all research areas. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results of the long-term performance variation of the plate-type enthalpy exchange element made of paper, design optimization of an extruded-type cooling structure for reducing the weight of LED street lights, and hot plate welding of thermoplastic elastomer packing. In the area of pool boiling and condensing, the heat transfer characteristics of a finned-tube heat exchanger in a PCM (phase change material) thermal energy storage system, influence of flow boiling heat transfer on fouling phenomenon in nanofluids, and PCM at the simultaneous charging and discharging condition were studied. In the area of industrial heat exchangers, one-dimensional flow network model and porous-media model, and R245fa in a plate-shell heat exchanger were studied. (3) Various studies were published in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, subjects include mobile cold storage heat exchanger, compressor reliability, indirect refrigeration system with $CO_2$ as secondary fluid, heat pump for fuel-cell vehicle, heat recovery from hybrid drier and heat exchangers with two-port and flat tubes. In the alternative refrigeration/energy system category, subjects include membrane module for dehumidification refrigeration, desiccant-assisted low-temperature drying, regenerative evaporative cooler and ejector-assisted multi-stage evaporation. In the system control category, subjects include multi-refrigeration system control, emergency cooling of data center and variable-speed compressor control. (4) In building mechanical system research fields, fifteenth studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, renewable energies, etc. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which could be help for improving the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the analyses of indoor thermal environments controlled by portable cooler, the effects of outdoor wind pressure in airflow at high-rise buildings, window air tightness related to the filling piece shapes, stack effect in core type's office building and the development of a movable drawer-type light shelf with adjustable depth of the reflector. The subjects of building energy were worked on the energy consumption analysis in office building, the prediction of exit air temperature of horizontal geothermal heat exchanger, LS-SVM based modeling of hot water supply load for district heating system, the energy saving effect of ERV system using night purge control method and the effect of strengthened insulation level to the building heating and cooling load.

Study on Characteristics of Heat Transfer and Flow in Plate Heat Exchanger (판형 열교환기의 열전달과 유동특성에 대한 연구)

  • Jin, Zhen-Hua;Lee, Kwang-Sung;Ji, Myoung-Kuk;Chung, Han-Shik;Jeong, Hyo-Min
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1476-1483
    • /
    • 2009
  • In present work, experiments conducted to investigate the heat transfer characteristics and relationship between operating parameters and production of fresh water as output of the system. Plate Heat Exchanger (PHE) applied in vacuum evaporator for product fresh water that system intended to efficiently use low grade heat. PHE have become popular in chemical, power, food and refrigeration industries due to the efficient heat transfer performance, extremely compact design and flexibility of extend or modify to suit changed duty. The heat transfer part contains corrugated plates with 60 degree of chevron angle which verified by many researchers and commonly apply. Fresh water can be produced from saline water under near vacuum pressure by operating ejector. Consequently, evaporating temperature stay around $51-57^{\circ}C$ so it is possible to use any low grade heat source or renewable source. The maximum fresh water produced by freshwater generator with plat heat exchanger applied in the study was designed as 1.0 Ton/day.

  • PDF