• Title/Summary/Keyword: Air Core

Search Result 747, Processing Time 0.033 seconds

DC-DC Converter Using Air Core Reactor (공심 리액터를 이용한 DC-DC 컨버터)

  • Ju, Hong-Ju;Lee, Hwa-Chun;Kim, Se-Min;Nam, Hae-Kon;Park, Sung-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.918-919
    • /
    • 2008
  • This paper deals with the DC-DC converter with high efficiency using the minimum reactor. In this paper, the proposed convert uses the air core reactor for ZCS(zero currunt switching) which can minimize the core losses and removes the over switching losses by soft switching. The proposed converter is verified by the modes analysis and computer simulation to prove the theoretical background and adequacy.

  • PDF

Numerical analysis of turbulent natural convection in a cylindrical transformer enclosure (변압기를 모델링한 두 개의 동심 원형 실린더 내에서 난류 자연대류의 수치해석)

  • 오건제;하수석
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.2
    • /
    • pp.157-166
    • /
    • 1999
  • Numerical calculations of turbulent natural convection in an enclosure of the 20 kYA oil-immersed transformer model are presented. The transformer is modelled as two concentric cylinders with different heights and diameters. The thermal boundary layers are well represented in the temperature distributions along the wall of the transformer model. The flow stratification between the hot and cold walls can not be seen in the transformer model. The turbulence eddy viscosity has its maximum at the center of the core and its maximum values at the top of the core are larger than those at the bottom of the core.

  • PDF

Analysis of Back EMF and Torque in Interior Permanent Magnet BLDC Motors (INTERIOR 영구자석 BLDC MOTOR의 역기전압과 토오크에 관한 분석)

  • Sung, Bu-Hyun;Ku, Ja-Nam;Kim, Chang-Jun;Lee, Jin-Won;Kim, Sung-Min;Bae, Gun-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.877-879
    • /
    • 1995
  • In this study, we developed the efficient brushless DC motor for a compressor of air conditioner. The characteristics of motor are under the control of the material of some parts and the shape of magnet. Especially we compared the interior shape to the surface shape of the magnet. And we optimized the parameters like the temperature and the materials of magnet and core by tool for more efficient motor.

  • PDF

A study on the effect of the condition number in the magnetic field mapping of the Air-Core solenoid

  • Huang, Li;Lee, Sangjin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.2
    • /
    • pp.31-35
    • /
    • 2015
  • Mapping is a useful tool in the magnetic field analysis and design. In some specific research area, such as the nuclear magnetic resonance (NMR) or the magnetic resonance imaging (MRI), it is important to map the magnetic field in the interesting space with high accuracy. In this paper, an indirect mapping method in the center volume of an air-core solenoid is presented, based on the solution of the Laplace's equation for the field. Through the mathematical analysis on the mapping calculation, we know that the condition number of the matrix, generated by the measurement points, can greatly affect the error of mapping result. Two different arrangement methods of the measurement points in field mapping are described in this paper: helical cylindrical line (HCL) method and parallel cylindrical line (PCL) method. According to the condition number, the HCL method is recommended to measure the field components using one probe. As a simple example, we mapped the magnetic fields in a MRI main magnet system. Comparing the results in the different methods, it is feasible and convenient to apply the condition number to reduce the error in the field mapping calculation. Finally, some guidelines were presented for the magnetic field mapping in the center volume of the air-core solenoid.

Hybrid design method for air-core solenoid with axial homogeneity

  • Huang, Li;Lee, Sangjin;Choi, Sukjin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.50-54
    • /
    • 2016
  • In this paper, a hybrid method is proposed to design an air-core superconducting solenoid system for 6 T axial uniform magnetic field using Niobium Titanium (NbTi) superconducting wire. In order to minimize the volume of conductor, the hybrid optimization method including a linear programming and a nonlinear programming was adopted. The feasible space of solenoid is divided by several grids and the magnetic field at target point is approximated by the sum of magnetic field generated by an ideal current loop at the center of each grid. Using the linear programming, a global optimal current distribution in the feasible space can be indicated by non-zero current grids. Furthermore the clusters of the non-zero current grids also give the information of probable solenoids in the feasible space, such as the number, the shape, and so on. Applying these probable solenoids as the initial model, the final practical configuration of solenoids with integer layers can be obtained by the nonlinear programming. The design result illustrates the efficiency and the flexibility of the hybrid method. And this method can also be used for the magnet design which is required the high homogeneity within several ppm (parts per million).

AC Current Sensor Using Air Core (공심코어를 사용한 교류전류 센서)

  • Park, Young-Tae;Jung, Jae-Kap
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.1
    • /
    • pp.48-52
    • /
    • 2005
  • This paper describes a current sensor for precision current measurement of an electronic watt-hour meter that is going to install in houses in the future. As the current sensor is based on an cored principle (the Rogowski principle) it is not subject to usual limitations of saturation and non-linearity of general current transformers. An advantage of the developed current sensor is that non-linearity error in low current range is improved and the construction can be kept simple using an air core. We present a magnetic field analysis of the sensor using a finite-element solver. We compared the measured values versus the calculated values.

Physical Properties of Aramid and Aramid/Nylon Hybrid ATY for Protective Garments according to the Dry and Wet Texturing Conditions (건·습 텍스쳐링 가공조건이 방호의류용 Aramid ATY와 Aramid/Nylon hybrid 사의 물성에 미치는 영향)

  • Park, Mi Ra;Kim, Hyun Ah;Kim, Seung Jin
    • Fashion & Textile Research Journal
    • /
    • v.15 no.3
    • /
    • pp.444-451
    • /
    • 2013
  • This paper surveys the physical properties of aramid and aramid/nylon hybrid air-jet textured yarns(ATY) for protective garments according to wet and dry texturing conditions. Aramid and nylon filaments were used to make two kinds of para-aramid ATY and four kinds of aramid/nylon hybrid ATY with dry and wet treatments. The analyzed physical properties of six specimens (made on the ATY machine) are as follows. The tenacity and initial modulus of aramid and aramid/nylon hybrid ATY decreased with the wetting and breaking strain; however, the yarn linear density of aramid and hybrid ATY increased with wetting treatment. The dry and wet thermal shrinkage of the hybrid ATY increased with wetting. The stability of aramid and hybrid ATY also increased with wetting. The physical properties of core/effect type hybrid ATY showed significantly more change than the core type hybrid ATY and the physical properties of nylon/aramid core/effect hybrid ATY showed significantly more change than the of aramid/nylon core/effect hybrid ATY. A higher bulky and breaking strain of hybrid ATY require ATY processing conditions of nylon on the core part with wetting and aramid on the effect part. ATY processing conditions for nylon and aramid on the core part with wetting are required for a higher tenacity and modulus. ATY processing conditions of nylon and aramid on the core with no wetting are required for a low thermal shrinkage.

Simulation of the Structural Parameters of Anti-resonant Hollow-core Photonic Crystal Fibers

  • Li, Qing;Feng, Yujun;Sun, Yinhong;Chang, Zhe;Wang, Yanshan;Peng, Wanjing;Ma, Yi;Tang, Chun
    • Current Optics and Photonics
    • /
    • v.6 no.2
    • /
    • pp.143-150
    • /
    • 2022
  • Anti-resonant hollow-core photonic crystal fiber (AR-HCF) has unique advantages, such as low nonlinearity and high damage threshold, which make it a promising candidate for high-power laser delivery at distances of tens of meters. However, due to the special structure, optical properties such as mode-field profile and bending loss of hollow-core fibers are different from those of solid-core fibers. These differences have limited the widespread use of AR-HCF in practice. In this paper we conduct numerical analysis of AR-HCFs with different structural parameters, to analyze their influences on an AR-HCF's optical properties. The simulation results show that with a 23-㎛ air-core diameter, the fundamental mode profile of an AR-HCF can well match that of the widely used Nufern's 20/400 fiber, for nearly-single-mode power delivery applications. Moreover, with the ratio of cladding capillary diameter to air-core diameter ranging from 0.6 to 0.7, the AR-HCF shows excellent optical characteristics, including low bending sensitivity while maintaining single-mode transmission at the same time. We believe these results lay the foundation for the application of AR-HCFs in the power delivery of high power fiber laser systems.

Tests of Inductive High-Tc Superconducting Fault Current Limiter with an Air-Gap (공극형 고온초전도한류기의 특성실험)

  • Joo, Min-Seok;Lee, Chan-Ju;Chu, Yong;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.181-183
    • /
    • 1996
  • A novel model of an inductive superconducting fault current limiter with an inductive superconducting fault current limiter with the air-gap core was fabricated and tested. If its impedance is not high enough to limit the fault current, then destructive damage occurs in the power system. We attained a magnetic saturation under higher current by an effective air gap introduced in the core. The fault current was successfully limited to two times as much as the nominal current at a 60 Hz source having an effective voltage of 70 V. The fault current flowing under such conditions can be limited to a desired value without any fault current peak within 1/4 cycles.

  • PDF

Air-void Analysis of Deteriorated Jointed Concrete Pavement Using Concrete Core Specimen (코어 시편을 이용한 열화된 줄눈콘크리트 포장의 공극구조 분석)

  • Choi, Pan-Gil;Jeong, Beom-Seok;Yun, Kyong-Ku;Kwan, Soo-Ahn
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.253-254
    • /
    • 2009
  • This study was conducted to estimate deterioration reason of jointed concrete pavement. Image analysis tests were performed according to ASTM C 457 using concrete core specimens. Durability factors were estimated according to spacing factor, which is related with air content and air-void information. Test results show that spacing factors of most specimens were estimated above 250$\mu$m so that investigated concrete pavement has the problem of freeze and thawing resistance.

  • PDF