• Title/Summary/Keyword: Air Control

Search Result 5,838, Processing Time 0.034 seconds

A Study on Contribution to Reducing Chemical Accidents of Reporting for Awarding a Contract of Hazardous Chemicals (유해화학물질 도급신고 제도가 화학사고 감소에 미치는 영향 연구)

  • Kim, Sungbum;Kwak, Daehoon;Jeong, Seongkyeong;Kim, Heetae;Mun, Dahui;Oh, Jun
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.3
    • /
    • pp.409-417
    • /
    • 2019
  • Purpose: Since the implementation of the Chemical Substance Management Act, data on the number of occurrences by annual chemical accident in Korea and the contractor's contract data received from the competent authority were used. After the implementation of the contract reporting system, the contribution to the reduction of chemical accidents is summarized by statistical data. The characteristics of each region, month, type and those of similar industries and human life were compared and analyzed. Method: 4 years of chemical accident statistics from 2015 to 2018 and since 2003, we have used data from the Chemical Safety Clearing-House (CSC), which provides safety information on cases of chemical accidents. Results and Conclusion: The risk of accidents increases as a number of unskilled workers are put into the workplace during the period when the hazardous chemical handling process is temporarily suspended. Through the reporting for awarding a contract, the operators are strengthening the safety management of chemical accidents by educating unskilled workers and wearing personal protective equipment.

Biological Response of Resistant Genes to Korean Brown Planthopper, Nilaparvata lugens Stål (벼멸구 저항성 유전자에 대한 국내 벼멸구의 생물적 반응 연구)

  • Choi, Nak Jung;Kim, Gwang-Ho;Baik, Chai-Hun;Lee, Bong-Choon
    • Journal of Life Science
    • /
    • v.29 no.2
    • /
    • pp.202-208
    • /
    • 2019
  • Brown planthopper (BPH), Nilaparvata lugens Stål (Hemiptera: Delphacidae), is one of the most important migratory pests damaging rice in Korea. It invades annually from tropical and subtropical areas via continental air streams. It is necessary to determine the resistance levels of rice varieties in order to control efficiency. The honeydew excretion, development, and reproduction of the migratory BPH were studied by region in a laboratory at $25{\pm}2^{\circ}C$ and $65{\pm}5%\;RH$ and a 16L: 8D photoperiodism conducted on three BPH resistant genes: Bph1, Bph2, and Bph18. The information obtained was reported using the jackknife method, and we created life table statistics accordingly. The feeding amount of Bph1 resistant gene was lower than that of resistant genes. The developmental periods of immature stages ranged from $13.7{\pm}0.10d$ on Bph2 (Namhae, 2015) to $18.5{\pm}1.06d$ on Bph2 (Sacheon, 2016). Reproductive period and female longevity were longest on the non-resistant genes, Bph2 and Bph18 (except 1980s), and the highest fecundity of N. lugens was observed on the two BPH resistant genes. Highest net reproductive rates ($R_0$) were calculated on Bph2 by region. Intrinsic rates of population increase ($r_m$) showed a difference in resistant genes by region. These population parameters showed that migratory regions and biological characteristics of N. lugens vary annually.

Digital Gravity Anomaly Map of KIGAM (한국지질자원연구원 디지털 중력 이상도)

  • Lim, Mutaek;Shin, Younghong;Park, Yeong-Sue;Rim, Hyoungrea;Ko, In Se;Park, Changseok
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.1
    • /
    • pp.37-43
    • /
    • 2019
  • We present gravity anomaly maps based on KIGAM's gravity data measured from 2000 to 2018. Until 2016, we acquired gravity data on about 6,400 points for the purpose of regional mapping covering the whole country with data density of at least one point per $4km{\times}4km$ for reducing the time of the data acquisition. In addition, we have performed local gravity surveys for the purpose of mining development in and around the NMC Moland Mine at Jecheon in 2013 and in the Taebaeksan mineralized zone from 2015 to 2018 with data interval of several hundred meters to 2 km. Meanwhile, we carried out precise gravity explorations with data interval of about 250 m on and around epicenter areas of Gyeongju and Pohang earthquakes of relatively large magnitude which occurred in 2016 and in 2017, respectively. Thus we acquired in total about 9,600 points data as the result. We also used additional data acquired by Pusan National University for some local areas. Finally, gravity data more than 16,000 points except for the repetition and temporal control points were available to calculate free-air, Bouguer, and isostatic gravity anomalies. Therefore, the presented anomaly maps are most advanced in spatial distribution and the number of used data so far in Korea.

Influence of the Amount of Conductive Paste on the Electrical Characteristics of c-Si Photovoltaic Module (전도성 페이스트 도포량 변화에 따른 결정질 태양광 모듈의 전기적 특성에 대한 영향성 분석)

  • Kim, Yong Sung;Lim, Jong Rok;Shin, Woo Gyun;Ko, Suk-Whan;Ju, Young-Chul;Hwang, Hye Mi;Chang, Hyo Sik;Kang, Gi-Hwan
    • Korean Journal of Materials Research
    • /
    • v.29 no.11
    • /
    • pp.720-726
    • /
    • 2019
  • Recently, research on cost reduction and efficiency improvement of crystalline silicon(c-Si) photovoltaic(PV) module has been conducted. In order to reduce costs, the thickness of solar cell wafers is becoming thinner. If the thickness of the wafer is reduced, cracking of wafer may occur in high temperature processes during the c-Si PV module manufacturing process. To solve this problem, a low temperature process has been proposed. Conductive paste(CP) is used for low temperature processing; it contains Sn57.6Bi0.4Ag component and can be electrically combined with solar cells and ribbons at a melting point of $150^{\circ}C$. Use of CP in the PV module manufacturing process can minimize cracks of solar cells. When CP is applied to solar cells, the output varies with the amount of CP, and so the optimum amount of CP must be found. In this paper, in order to find the optimal CP application amount, we manufactured several c-Si PV modules with different CP amounts. The amount control of CP is fixed at air pressure (500 kPa) and nozzle diameter 22G(outer diameter 0.72Ø, inner 0.42Ø) of dispenser; only speed is controlled. The c-Si PV module output is measured to analyze the difference according to the amount of CP and analyzed by optical microscope and Alpha-step. As the result, the optimum amount of CP is 0.452 ~ 0.544 g on solar cells.

Heat Integration and Economic Analysis of Dry Flue Gas Recirculation in a 500 MWe Oxy-coal Circulating Fluidized-bed (CFB) Power Plant with Ultra-supercritical Steam Cycle (순환 유동층 보일러와 초초임계 증기 사이클을 이용한 500 MWe급 순산소 화력발전소의 건식 재순환 흐름의 열 교환 및 경제성 분석)

  • Kim, Semie;Lim, Young-Il
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.60-67
    • /
    • 2021
  • This study presented techno-economic analysis of a 500 MWe oxy-coal power plant with CO2 capture. The power plant included a circulating fluidized-bed (CFB), ultra-supercritical steam turbine, flue gas conditioning (FGC), air separation unit (ASU), and CO2 processing unit (CPU). The dry flue gas recirculation (FGR) was used to control the combustion temperature of CFB. One FGR heat exchanger, one heat exchanger for N2 stream exiting ASU, and a heat recovery from CPU compressor were considered to enhance heat efficiency. The decrease in the temperature difference (ΔT) of the FGR heat exchanger that means the increase in heat recovery from flue gas enhanced the electricity and exergy efficiencies. The annual cost including the FGR heat exchanger and FGC cooling water was minimized at ΔT = 10 ℃, where the electricity efficiency, total capital cost, total production cost, and return on investment were 39%, 1371 M$, 90 M$, and 7%/y, respectively.

Radon Hazard Review of Spilled Groundwater and Tap Water in Incheon Metropolitan City Subway Station (인천광역시 지하철 역사 내 지하수 및 수돗물의 라돈 위해성 검토)

  • Lee, Yoo-Sang;Lee, Sang-Bok;Kang, Min-Seok;Jeong, Dong-Ha;Kim, Jin-Hong;Oh, Yoon-Sik;Choi, Se-Rin;Park, Jeong-Soo;Kim, Sungchul
    • Journal of radiological science and technology
    • /
    • v.44 no.6
    • /
    • pp.671-677
    • /
    • 2021
  • Interest in the everyday hazards of radon has recently increased as such, this study attempted to examine the dangers of radon in spilled groundwater by comparing the radon concentrations of the drained groundwater and tap water used in recirculating systems in Incheon Subway restrooms. At five stations of Incheon Subway Line 1 and three stations of Line 2, drained groundwater is recirculated and used in restrooms for toilet flushing. Stations restroom tap water for hand washing that used as a control and the measured values of each were compared. With the cooperation of Incheon Transportation Corporation, samples of spilled groundwater and tap water were collected sealed to prevent contact with the air, and a DURRIDGE RAD7 was used as the experimental equipment. The collected samples were subjected to radial equilibration for approximately 3.5 h, at which the radon concentration reached its maximum, and then calculated as 10 measurements using the RAD7 underwater radon measurement mode. In all eight stations, the radon concentration in tap water was lower than the recommended amount. However, in an average of 7 out of the eight stations, the radon concentration in the effluent groundwater was 100 times higher than that in tap water. Since high radon concentrations in groundwater runoff can be harmful to humans, and there is no accurate standard for radon concentrations in domestic water, it is necessary to continuously monitor radon in water and prepare a guidance of recommended values.

Morphology control of glassy carbon coating layer to additive ethylene glycol and phenolic resin (페놀수지 및 에틸렌 글리콜을 첨가한 유리질 카본 코팅층의 물성 제어)

  • Joo, Sang Hyun;Joo, Young Jun;Lee, Hyuk Jun;Sim, Young Jin;Park, Dong Jin;Cho, Kwang Youn
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.3
    • /
    • pp.89-95
    • /
    • 2022
  • In this study, glassy carbon coating was performed on the graphite using a phenolic resin and a curing agent was mixed with ethylene glycol as an additive to form the uniform surface. The phenolic resin was dried and cured under the environments of hot air, then converted into a glassy carbon layer by pyrolysis at 500~1,500℃. FTIR, XRD, SEM analysis, and density/porosity/contact angle measurement were performed for characterization of glassy carbon. The pyrolysis temperature for high-quality glassy carbon was optimized to be about 1,000℃. As the content of the additive increased, the effect of reducing surface defects on the coated surface, reduction of porosity, increase of contact angle, and increase of density were investigated in this study. The method of forming a glassy carbon coating layer through an additive is expected to be applicable to graphite coating and other fields.

Challenges of Medical Waste Treatment in Fiji (피지국에서의 의료폐기물 처리현황과 문제점)

  • Kim, Daeseon;Bolaqace, Josefa;Rafai, Eric;Lee, Chulwoo
    • Journal of Appropriate Technology
    • /
    • v.6 no.1
    • /
    • pp.37-44
    • /
    • 2020
  • Medical waste is any kind of waste that contains infectious material and recommended not to be transferred for infection control. As a means of disposal, incineration has better points than dumping or landfill in the quantity reduction, odorless and nonhazardous. However, open burning and incineration of health care wastes under bad circumstances, can result in the emission of environmental pollutants to air. A burial of biological waste brings pollution of soil and water. Most of sub divisional hospitals in Fiji transfer their medical wastes to divisional hospitals for incineration. In 2011, 62,518 kg of medical waste was incinerated in the three divisional hospitals. However, some medical wastes are considered as general waste and burnt or sent to landfill site, some are buried on site in some sub-divisional hospitals. In this regards, urgent education is necessary for awareness promotion to relevant personnel in medical waste treatment. On site incineration using small scale incinerator is more recommended than transportation of medical wastes treatment in Fiji. Moreover, remotely controllable and fixable small scale of incinerator is more desirable in sub-divisional hospitals. It is recommended that Fiji government to set up a legal framework for medical waste management (MWM), to develop specific guidelines for MWM, to set up a training system for MWM to ensure that all relevant personnel are trained, to develop a monitoring and supervision system for MWM, to clarify the future financing of MWM activities, and to improve the MWM infrastructure.

Effect of Removal of Power Plant Emissions on the characteristics of Ozone Concentration Changes in Summer (화력발전소 배출량 제거에 따른 여름철 O3 농도의 변화 특성)

  • Kim, Dongjin;Jeon, Wonbae;Park, Jaehyeong;Mun, Jeonghyeok
    • Journal of the Korean earth science society
    • /
    • v.42 no.2
    • /
    • pp.149-163
    • /
    • 2021
  • In this study, the changes in ozone (O3) concentrations due to the removal of power plant emissions were analyzed using a community multi-scale air quality (CMAQ) model. Two different CMAQ model simulations, one considering the emissions from the Hadong power plant and one without considering the emissions, were conducted to investigate the effect of the emissions on the changes in the O3 concentrations in the surrounding areas. Subsequently, the CMAQ simulations exhibited an increase in the O3 concentration (25.24%) despite a decrease in the NOx (-18.87%) and volatile organic carbon (VOC, -11.27%) concentrations, which are major O3 precursors. The changes in the NO and O3 concentrations due to the removal of power plant emissions presented a strong negative correlation (r= -0.72). This indicated that the increase in the O3 concentration was mainly attributed to the significantly decreased NO concentration, thus, mitigating the O3 titration reaction (NO+O3→NO2+O2). Additionally, due to the VOC-limited (i.e., NOx-saturated) conditions in the study region, NO affected the O3 concentration, indicating that the O3 concentrations in a particular region are not only proportional to the increase or decrease in emissions. Therefore, an in-depth understanding of the chemical O3 production and loss in a particular region is necessary to accurately evaluate the effect of emission control on the changes in the O3 concentration.

Effects of the Subgrid-Scale Orography Parameterization and High-Resolution Surface Data on the Simulated Wind Fields in the WRF Model under the Different Synoptic-Scale Environment (종관 환경 변화에 따른 아격자 산악모수화와 고해상도 지면 자료가 WRF 모델의 바람장 모의에 미치는 영향)

  • Lee, Hyeon-Ji;Kim, Ki-Byung;Lee, Junhong;Shin, Hyeyum Hailey;Chang, Eun-Chul;Lim, Jong-Myoung;Lim, Kyo-Sun Sunny
    • Atmosphere
    • /
    • v.32 no.2
    • /
    • pp.103-118
    • /
    • 2022
  • This study evaluates the simulated meteorological fields with a particular focus on the low-level wind, which plays an important role in air pollutants dispersion, under the varying synoptic environment. Additionally, the effects of subgrid-scale orography parameterization and improved topography/land-use data on the simulated low-level wind is investigated. The WRF model version 4.1.3 is utilized to simulate two cases that were affected by different synoptic environments. One case from 2 to 6 April 2012 presents the substantial low-level wind speed over the Korean peninsula where the synoptic environment is characterized by the baroclinic instability. The other case from 14 to 18 April 2012 presents the relatively weak low-level wind speed and distinct diurnal cycle of low-level meteorological fields. The control simulations of both cases represent the systematic overestimation of the low-level wind speed. The positive bias for the case under the baroclinic instability is considerably alleviated by applying the subgrid-scale orography parameterization. However, the improvement of wind speed for the other case showing relatively weak low-level wind speed is not significant. Applying the high-resolution topography and land-use data also improves the simulated wind speed by reducing the positive bias. Our analysis shows that the increased roughness length in the high-resolution topography and land-use data is the key contributor that reduces the simulated wind speed. The simulated wind direction is also improved with the high-resolution data for both cases. Overall, our study indicates that wind forecasts can be improved through the application of the subgrid-scale orography parameterization and high-resolution topography/land-use data.