• 제목/요약/키워드: Air Conditioning Duct

검색결과 189건 처리시간 0.024초

국소환기시스템의 후드형상 개선에 따른 수치해석 (Numerical Analysis on Hood Shape Improvement of Local Ventilation System)

  • 이중섭;장성철;최주홍
    • 설비공학논문집
    • /
    • 제21권4호
    • /
    • pp.260-265
    • /
    • 2009
  • The aim of this study is to remove crack on a ventilation device at the suction part of zinc plating factory, and the main point is making optimum configuration by improving an existing hood system. The result shows that existing hood system has problem with duct configuration, angle and reducer. Model-5 shows lowest pressure difference as meaning of suction capability. The hood inlet surface has most uniform suction capability.

T-method를 이용한 고층 아파트 욕실 배기 시스템의 층별 유량분배 해석 (Analysis of Air Flow Rate Distribution for the Bathroom Exhaust System in High-rise Buildings Using T-method)

  • 문종선;강석윤;이승철;유호선;이재헌
    • 설비공학논문집
    • /
    • 제16권3호
    • /
    • pp.265-272
    • /
    • 2004
  • Based on the T-method, a new scheme for predicting air flow rate distribution in a bathroom exhaust system is developed. Introduction of individual duct route enables us to disintegrate a complicated multi-fan ductwork into a set of simultaneous single-fan subsystems. The scheme is validated via the analysis of a well-posed test problem, showing physical consistency. In order to demonstrate the utility and capability of our method, the bathroom ventilation system in a 20-story residential building is selected as an example. Under the typical design condition, the air flow rate of each exhaust fan at the balancing point is successfully predicted, and such information can lead to an engineering estimation for the overall system performance. While some deficiencies in ventilation are found at bathrooms at lower floors with 6mmAq-rated exhaust fans, they disappear over the whole building by using fans of enhanced static pressures, 7 and 8mmAq. Finally the present scheme seems to be useful for practical design of multi-branched, multi-fan ventilation systems.

초임계상태 이산화탄소의 정사각 단면 직덕트 내 난류유동 및 열전달의 전산해석 (Numerical Analysis of Turbulent Carbon Dioxide Flow and Heat Transfer under Supercritical State in a Straight Duct with a Square Cross-Section)

  • 최영돈;주광섭;김용찬;김민수
    • 설비공학논문집
    • /
    • 제14권12호
    • /
    • pp.1004-1013
    • /
    • 2002
  • Turbulent carbon dioxide flows and cooling heat transfers under supercritical state in a straight duct with a square cross-section are numerically analyzed employing low Reynolds number $\kappa-\varepsilon$ model and algebraic stress model. The flow is assumed to be (quasi-incompressible. Predicted Nusselt number and friction factor are compared with the experimental data, Blasius correlation for friction factor and Dittus-Boelter correlation for Nusselt number. Computational results for the Fanning's friction factor agree well with the all Rohsenow and Choi's correlation, Liou and Hwang's experimental data and Blasius correlation. The results obtained by algebraic stress model agree more with the Liou and Hwang's experimental data, while the results obtained by low Reynolds number $\kappa-\varepsilon$ model agree more with Blasius correlation. In the computation of Nusselt number, Dittus-Boelter correlation can not exactly fit the computational results. Therefore we propose the new correlation$Nu=0.053Re^{0.73}Pr^{0.4}$for the turbulent cooling heat transfer of carbon dioxide under supercritical state.

4각 덕트내에서 난류 맥동유동의 난류특성에 관한 연구 (A Study on Turbulent Characteristics of Turbulent Pulsating Flows in a Square Duct)

  • 박길문;고영하
    • 설비공학논문집
    • /
    • 제2권3호
    • /
    • pp.188-198
    • /
    • 1990
  • Turbulent characteristics of turbulent pulsating flows were studied experimentally in a square duct. Velocity waveforms, velocity profiles, and turbulent intensity of turbulent pulsating flow were investigated by using a hot-wire anemometer with data acquisition and a processing system in a square duct with a ratio of 1 ($40mm{\times}40mm$) to 4,000mm long. Turbulent components were shown to be larger in decelerating than in accelerating regions and also larger for a large phase of velocity and U'rms distribution of turbulent flow. The effect of velocity amplitude ratio does not exist for specified time [${\theta}(z^{\prime})$], amplitude ratio (${\mid}U^{\prime}_{rms.os.1}{\mid}/{\mid}U_{m.os.1}{\mid}$), and phase difference (${\Delta}U^{\prime}_{rms.os.1}-{\Delta}U_{m.os.1}$) in either turbulent oscillating or cross-sectional mean velocity components. The effect of dimensionless angular frequency for specified time [${\theta}(z^{\prime})$] can be disregarded because the dimensionless angular frequency does not affect the specified time. The velocity distributions of turbulent pulsating flows for various time-averaged Reynolds numbers are in approximate agreement with the velocity distributions for equivalent Reynolds numbers and 1/7th power law of steady flow.

  • PDF

매끈한 벽면을 가진 회전덕트 내 레이놀즈 수에 따른 열/물질전달 및 압력강하 특성 연구 (Experimental Study of Reynolds Number Effects on Heat/Mass Transfer and Pressure Drop Characteristics in a Rotating Smooth Duct)

  • 김경민;박석환;이동현;조형희
    • 설비공학논문집
    • /
    • 제18권11호
    • /
    • pp.888-895
    • /
    • 2006
  • The present study has been conducted to investigate the effects of Reynolds number on heat/mass transfer and pressure drop characteristics in a rotating smooth two-pass duct. For stationary cases, the heat/mass transfer and pressure drop Is decreased on turning region of both leading and trailing surfaces as Reynolds number increases. For rotating cases, increment of Reynolds number affects differently the heat/mass transfer and pressure drop on the leading and trailing surfaces. In the first pass, for example, the heat/mass transfer on the leading surface is greatly increased, though the heat/mass transfer on the trailing surface is almost the same. The reason is that effect of the main flow is more dominant than effect of secondary flow. In particular, it gave decrement of the heat/mass transfer and the pressure drop at turning region and upstream region of second pass for both non-rotating and rotating cases.

고분보존용 덕트형 공조시스템의 운전 특성 (Performance of an Duct-type HVAC System for Conservation of Ancient Tombs)

  • 전용두;이금배;박진양;고석보;전희호;윤영묵
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.29-34
    • /
    • 2006
  • Although the importance of good conservation of historic sites including ancient royal tombs is well aware, still not much attention has been paid for the facilities and systems to preserve those historic sites, which includes precious artifacts as wall paints and carved works, etc. Even the level of general understanding about the environment of the underground space of tombs is not satisfactory. In Korea, researchers have recently begun addressing the importance of maintaining proper environment for underground space as of ancient tombs and are making efforts to develop suitable HVAC(heating, ventilating and air-conditioning) systems for them. In this study, an HVAC system for a tomb ($D{\times}W{\times}H=1.3m{\times}3.0m{\times}1.2m$) was installed to maintain suitable indoor conditions for conservation of tomb. The temperature and humidity inside the tomb were measured to represent the performance of the installed duct-type HVAC system. Vibration levels due to the installed an HVAC system are alive investigated experimentally. According to the measured data, the level of vibration inside the present model tomb with the duct-type unit showed significantly lower values than the case with the indoor unit inside.

  • PDF

화장실을 이용한 층별 피난공간 확보 기술개발 (Development of Technology to Secure Refuge Space by Using Existing Restroom)

  • 김지석;신현준;김정엽;박병직
    • 설비공학논문집
    • /
    • 제27권1호
    • /
    • pp.24-30
    • /
    • 2015
  • The fire on a high-rise building would possibly cause fatalities because of ineffective egress due to extended evacuation distance in huge building structure, coupled with dense population, thus requiring secured optimal evacuation method and space. The restroom located in the living space is considered to be useful refuge space which is built with wet pipe and noncombustible materials. This study aimed to develop a system that would make use of the existing restroom as a fire refuge space. Ventilation duct were installed to discharge odor during normal conditions. We could serve the air supply duct to also raise the air pressure in the restroom so as to prevent the toxic gas from gapping around the restroom. The nozzle for the water screen would be installed in restroom door facing the living room to form the water screen which would protect the door. This study is intended to replace the existing refuge space with the restroom in such a way as described above.

세라믹 열교환기의 이론해석 및 CFD 시뮬레이션 (A theoretical Analysis and CFD Simulation on the Ceramic Heat Exchanger)

  • 팽진기;윤영환
    • 설비공학논문집
    • /
    • 제21권5호
    • /
    • pp.282-290
    • /
    • 2009
  • A ceramic monolith heat exchanger is studied to find the performance of heat transfer and pressure drop by numerical computation and $\xi$-NTU method. The numerical computation was performed throughout the domain including fluid region in exhaust gas-side rectangular ducts, ceramic core and fluid region in air-side rectangular duct with the air and exhaust in cross flow direction. In addition, the heat exchanger was also analyzed to estimate the performance by conventional $\xi$-NTU method with several Nusselt number correlations for flow in rectangular duct from literature. By comparisons of both performances by the numerical computation and the $\xi$-NTU method, the effectiveness by $\xi$-NTU method was closest to the result by numerical computation within a relative error of 2.14% when Stephan's Nusselt number correlation was adopted to the $\xi$-NTU method among the several correlations.

냉난방 시스템의 이중선형 시스템에 관한 제어기 설계 (A Controller Design of the Bilinear System for HVAC(Heating, Ventilating and Air-conditioning) System)

  • 이정석;강민수;김명호;이기서
    • 한국철도학회논문집
    • /
    • 제3권4호
    • /
    • pp.177-184
    • /
    • 2000
  • In this paper, a HVAC controller which has a bilinear system is designed to control the air temperature in building room and a saving of energy on the HVAC system. For modeling of the HVAC bilinear system, AHU(Air Handling Unit) is modeled on the control of inside-outside air flow using three dampers in a duct. A heat exchanger and the single room are also modeled by the energy conservation law. Under the modeling of the HVAC bilinear system, the control's law of the bilinear HVAC system is derived by Lyapunov's non-linear theory and Deress's the linear feedback laws for bilinear system. In this paper it was proved that the controller of the HVAC bilinear system is able to control the air temperature with a disturbance in order to get a target of temperature in the building room by the computer simulation when the control inputs regulate the air flow rate and a capacity of the heat exchanger.

  • PDF