• Title/Summary/Keyword: Air Conditioning Duct

Search Result 189, Processing Time 0.026 seconds

Change of Heat Transfer Characteristics in a Rotating Channel of . Square Duct at Wall with Bleed Holes ( II ) - Effects of Exit Mass Flow Rate - (회전하는 사각덕트 유로에서 벽면 유출홀에 따른 열전달 특성 변화( ll ) -유출유량 변화에 따른 영향 -)

  • Kim Sang In;Kim Kyung Min;Lee Dong-Hyun;Jeon Yun Heung;Cho Hyung Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.10
    • /
    • pp.907-913
    • /
    • 2005
  • The present study has been conducted to investigate convective heat/mass transfer in the cooling passage with bleed holes. The rotating square channel has 40.0 mm hydraulic diameter and the bleed holes on the leading surface of the channel. The hole diameter of bleed hole is 4.5mm and its spacing is ( p/d:4.9) about five times of hole diameter. Exit mass flow rate through bleed holes is $0\%,\;10\%\;and\;20\%$ of the main mass flow rate respectively. rotation number is fixed 0.2. A naphthalene sublimation technique is employed to determine the detailed local heat transfer coefficients using the heat and mass transfer analogy. The cooling performance is influenced by exit mass flow rate through bleed holes and Coriolis force of rotating channel for fixed Reynolds number. The heat transfer on the leading surface is decreased due to Coriolis force. However the total heat transfer is enhanced around holes on the leading surface because of trapping flow by bleeding.

Recent Progress in Air Conditioning and Refrigeration Research - A Review of papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 1998 and 1999 - (공기조화, 냉동 분야의 최근 연구 동향 - 1998년 1999년 학회지 논문에 대한 종합적 고찰 -)

  • 이재헌;김광우;김병주;이재효;김우승;조형희;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.12
    • /
    • pp.1098-1125
    • /
    • 2000
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 1998 and 1999 has been done. Focus has been put on current status of research in the aspect of heating, cooling, ventilation, sanitation and building environment. The conclusions are as follows. 1) A review of the recent studies on fluid flow, turbomachinery and pipe-network shows that many experimental investigations are conducted in applications of impingement jets. Researches on turbulent flows, pipe flows, pipe-networks are focused on analyses of practical systems and prediction of system performance. The results of noise reduction in the turbomachinery are also reported. 2) A review of the recent studies on heat transfer analysis and heat exchanger shows that there were many papers on the channel flow with the application to the design of heat exchanger in the heat transfer analysis. Various experimental and numerical papers on heat exchanger were also published, however, there were few papers available for the analysis of whole system including heat exchanger. 3) A review of the recent studies on heat pump system have focused on the multi-type system and the heat pump cycle to utilize treated sewage as the heat source. The defrosting and the frosting behaviors in the fin-tube heat exchanger is experimentally examined by several authors. Several papers on the ice storage cooling system are presented to show the dynamic simulation program and optimal operation conditions. The study on the micro heat pipes for the cooling of high power electronic components is carried out to examine the characteristics of heat and mass transfer processed. In addition to these, new type of separate thermosyphon is studied experimentally. 4) The recent studies on refrigeration/air conditioning system have focused on the system performance and efficiency for new alternative refrigerants. New systems operating with natural refrigerants are drawing lots of attention. In addition to these, evaporation and condensation heat transfer characteristics of traditional and new refrigerants are investigated for plain tubes and also for microfin tubes. Capillary tubes and orifice are main topics of research as expansion devices and studies on thermophysical properties of new refrigerants and refrigerant/oil mixtures are widely carried out. 5) A review of the recent studies on absorption cooling system shows that numerous experimental and analytical studies on the improvement of absorber performance have been presented. Dynamic analysis of compressor have been performed to understand its vibration characteristics. However research works on tow-phase flow and heat transfer, which could be encountered in the refrigeration system and various phase-change heat exchanger, were seemed to be insufficient. 6) A review of recent studies on duct system shows that the methods for circuit analysis, and flow balancing have been presented. Researches on ventilation are focused on the measurement of ventilation efficiency, and variation of ventilation efficiency with ventilation methods by numerous experimental and numerical studies. Furthermore, many studies have been conducted in real building in order to estimate indoor thermal environments. Many research works to get some information for cooling tower design have been performed but are insufficient. 7) A review on the recent studies on architectural thermal environment and building mechanical systems design shows that thermal comfort analysis is sitting environment, thermal performance analysis of Korean traditional building structures., and evaluation of building environmental load have been performed. However research works to improve the performance of mechanical system design and construction technology were seemed to be insufficient.

  • PDF

Numerical Analysis on HVAC Characteristics of Train with non-uniform Interior Cross-section (비균일 단면을 가진 철도차량의 내부 열유동 해석)

  • Nam Seong-Won;Kim Hyeong-Jin
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.685-689
    • /
    • 2004
  • Numerical simulation is conducted to clarify the heat transfer and fluid flow characteristics of HVAC(Heating, Ventilating and Air-Conditioning) for double' deck train. The HVAC system is installed under the roof of carbody. In the lay-out of HVAC system, air duct must be installed to supply air to 1st and 2nd floor respectively. The standard k-$\epsilon$ and LES models for turbulence and SIMPLE algorithm for pressure equation hased on finite volume method are used to solve the physic a] HVAC model. To assure convergence, QUICK scheme for momentum equation and the 2nd order upwind scheme for turbulent equations arc used. From the results of simulation, the temperature and velocity magnitude are also distributed uniformly in the interior of double-deck passenger car.

  • PDF

Numerical Analysis on the HVAC Characteristics of Double-deck Train (2층 객차의 HVAC특성 전산해석)

  • Nam Seong-Won;Kim Hyeong-Jin
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.358-362
    • /
    • 2003
  • Numerical simulation is conducted to clarify the heat transfer and fluid flow characteristics of HVAC(Heating, Ventilating and Air-Conditioning} for double-deck train. The HVAC system is installed under the roof of carbody. In the lay-out of HVAC system, air duct must be installed to supply air to 1st and 2nd floor respectively. The standard k-epsilon turbulent models and SIMPLEC algorithm based on finite volume method are used to solve the physical HVAC model. To assure convergence, QUICK scheme for momentum equation and the first order upwind scheme for turbulent equations are used. From the results of simulation, the temperature and velocity magnitude are also distributed uniformly in the interior of passenger car.

  • PDF

Analysis on the Uniformity of Temperature and Humidity According to Environment Control in Tomato Greenhouses (토마토 재배 온실의 환경조절에 따른 온습도 균일도 분석)

  • Nam, Sang-Woon;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.18 no.3
    • /
    • pp.215-224
    • /
    • 2009
  • A survey on the actual state of heating, cooling, ventilation, and air-flow and experimental measurement of temperature and humidity distribution in tomato greenhouse were performed to provide fundamental data required in the development of air-flow control technology. In single-span plastic houses, which account for most of 136 tomato greenhouses surveyed, roof windows, ventilation and air-flow fans were installed in a low rate, and installation specs of those facilities showed a very large deviation. There were no farms installed greenhouse cooling facilities. In the hot air heating system, which account for most of heating type, installation specs of hot air duct showed also a large deviation. The exhaust air temperature and wind speed in hot air duct also were measured to have a big difference depending on the distance from the heater. We are using the maximum difference as indicator to determine whether temperature distribution is uniform. However if the temperature slope is not identical in greenhouse, it can't represent the uniformity. We analyzed relation between the maximum difference and the uniformity of temperature and humidity distribution. The uniformity was calculated using the mean and standard deviation of data from 12 measuring points. They showed high correlation but were represented differently by linear in the daytime and quadratic in the nighttime. It could see that the uniformity of temperature and humidity distribution was much different according to greenhouse type and heating method. The installation guidelines for ventilation and air-flow fan, the spread of greenhouse cooling technology for year-round stable production, and improvement of air duct and heating system, etc. are needed.

A Verification Study on the Demand Performance of Fabric Duct for Localization Development of Naval Vessel (해군 수상함 국산화개발 천 덕트의 요구성능 검증연구)

  • Jung, Young In;Choi, Sang Min;Jung, Hyun Sub;Sim, Min Sub
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.468-474
    • /
    • 2020
  • Metal ducts for transporting air conditioning and heating inside ships have recently been replaced by cloth ducts that have the advantage of delivering air evenly to the compartments, with excellent noise reduction in major compartments, such as combat command rooms, steering rooms, and sound detector cabins. Since the performance requirements of fabric ducts for vessels are strict, and the entire length of the ducts was imported from Korea, the government wants to create economic effects through localization of fabric ducts. Air permeability and fire prevention performance tests verified the applicability to naval vessels of fabric ducts developed by Hyundai Heavy Industries and HiDact, and performance requirements presented in the POS were verified. As a result of the tests, the fabric ducts met the requirements for air permeability and fireproof performance.

A Numerical Study on the Heat Transfer Characteristics in an Internally Finned Circular Tube Flow (내부핀이 부착된 원형관유동에서의 열전달특성에 관한 수치적연구)

  • Pak, H.Y.;Park, K.W.;Choi, M.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.2
    • /
    • pp.267-278
    • /
    • 1996
  • Steady, laminar, forced convection flow and heat transfer in the entrance region of an internally finned circular duct with a finite thermal conductivity has been analyzed numerically. The problem under investigation is a three-dimensional boundary layer problem, and is solved by employing a marching-type procedure which involves solution of a series of 2-dimensional elliptic problems in the cross-stream plane. Two types of inlet hydrodynamic conditions are considered : (a) uniform velocity flow and (b) fully developed flow. From the above inlet conditions, the effects of the fin height(h), fin number(N) and conductivity ratio($k_r$) on the flow and thermal characteristics are investigated. The numerical results show that the height and number of fins, and ratio of the solid to fluid thermal conductivity have pronounced effect on the solution. Considering pressure drop, optimized dimensionless fin height is 0.4.

  • PDF

An Analysis on Thermal Performance and Economic of Heat Recovery Ventilation System Integrated with Window (창호통합형 배열회수 환기시스템의 열성능 및 경제성 평가)

  • Sung, Uk-Joo;Cho, Soo;Song, Kyoo-Dong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.8
    • /
    • pp.646-655
    • /
    • 2012
  • This study is intended to analyze the thermal performance and evaluate the applicability about non-duct type heat recovery ventilation system integrated with window. Eventually, economic analysis of the system is conducted according to building energy saving ratio of it. As results of the thermal performance, the U-factor of the window conducted on the basis of KS F 2278 appears to $1.8W/m^2K$, and the effective heat exchange efficiency of the ventilator conducted on the basis of KS B 6879 appears 49.95% for cooling, 66.89% for heating. In the applicability evaluated by TRNSYS 16, the caes of applying the heat recovery ventilator integrated with window is found to reduce the cooling or heating load by 2.9% or 13.5% than the non-ventilator case. The results of economic analysis taking a side of consumer is verified as the payback is 3 years, and the accumulated earning is 1,408,133 won in terms of '600,000 won/unit' for initial cost, 10 years for useful life of the system.

Verification of the Boundary Conditions Used for Generating g-functions and Development of a TRNSYS Simulation Model Using g-functions (트랜시스를 이용한 지열 응답 함수 경계 조건 검증 및 시뮬레이션 모델 개발에 관한 연구)

  • Kim, Eui-Jong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.9
    • /
    • pp.416-423
    • /
    • 2014
  • To verify different boundary conditions on the borehole wall, which are commonly used for generating g-function, the well-known TRNSYS simulation model, DST (Duct STorage), is employed. By letting the fluid circulation determine the borehole wall conditions, a DST-based g-function is induced with numerical processes proposed in this work. A new TRNSYS module is also developed to accommodate g-function data and predict dynamic outlet fluid temperatures. Results showed that the modified g-function, which is different from Eskilson's original g-function, is closer to the DST-based g-function. This implies that the uniform heat transfer rates over the height can be used for good approximation. In fact, simulations with the modified g-function showed similar results as the DST model, while Eskilson g-function case deviated from the DST model as time progressed.

Heat Transfer in a Duct with Various Cross Section of Ribs (초소형 열병합발전시스템(${\mu}CHP$) 운전거동 시뮬레이션 프로그램 개발)

  • Cho, Woo-Jin;Lee, Kwan-Soo;Kim, In-Kyu
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.172-176
    • /
    • 2009
  • We developed a program, "CogenSim-$\mu$," to simulate the operation of micro-combined heat and power (${\mu}CHP$) system. The CogenSim-$\mu$ can reflect the variation of energy efficiency by handling the real-time loads (heat and power) fluctuation. The result obtained using this program was compared with the real operation of 30 kWe gas engine driven ${\mu}CHP$. It was found that the CogenSim-$\mu$ could predict the amount of generated-power, recovered-heat and consumed-fuel with the error less than 3%, and heat and power efficiency with the error less than 4%. The CogenSim-$\mu$ reconstructed the profile of on-off cycle, which represented the operation of a facility, with more than 93% accuracy. The CogenSim-$\mu$ can reflect the effects of various factors such as size of thermal storage tank, desired temperature of reservoir water, natural frequency of generator, etc. As a result, the CogenSim-$\mu$ can be used to optimize the ${\mu}CHP$ operation.

  • PDF