• Title/Summary/Keyword: Air Condensation

Search Result 440, Processing Time 0.025 seconds

Separate type heat pipe performance comparison by the heat exchanger shapes (열교환기 형상에 따른 분리형 히트파이프 성능 비교)

  • Jeon, Sung-Taek;Cho, Jin-Pyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.723-729
    • /
    • 2016
  • This study compared fin-tube and parallel-flow heat pipes for their sensible heat exchange rate, heat recovery amount, and air-side pressure drop. Tests were done with different refrigerant charging rates of 40-60% vol. and air flow rates of 300-1,400. The sensible heat exchange rate was highest for both types of heat pipes at a working fluid charge of 40% vol. and low flow rate. For the parallel-flow heat pipe, the 60% vol. charge is too high and results in a low sensible heat exchange rate. The reason is that the thicker liquid film of the tube wall deteriorates the heat transfer effect. Hence, the optimal charging rate is 40 to 50% vol. The evaporator heat pipe has a larger air-side pressure drop than the condenser section heat pipe. The reason is considered to be condensation water arising from the evaporator surface. Compared to the fin-tube heat pipe, the parallel-flow heat pipe showed better performance with a working fluid charging rate of 48%, volume of 41%, and an air-side pressure drop about 37%.

The Statistical Identification of Airmass Characteristics during the Manna Loa Observatory Photochemistry Experiment (Mauna Loa (Hawaii)에서 관측된 대기질 특성의 통계적 분석)

  • Lee, Gang-Woong;Barry J. Huebert
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.10 no.E
    • /
    • pp.332-342
    • /
    • 1994
  • Hierarchical cluster and factor analyses were used to identify various influences on free tropospheric air samples at Mauna Loa Observatory in Hawaii during MLOPEX. The cluster analysis separated thirteen chemical and meteorological variables into three characteristic groups (1)clean air, (2)anthropogenically influenced air, (3)marine and volcanic influenced air. The cluster analysis results compared well with those of factor analysis. Six independent components were identified in factor analysis. We have related these components to (1)volcano influenced air, (2)stratosphere-like air, (3)boundary-layer air with recent anthropogenic influence, (4)photochemical haze, (5)marine boundary- layer air, and (6)modified marine tropospheric air. Excluding local influence, we could calculate the nighttime free tropospheric values for $O_3$(41$\pm$10 ppbv), HN $O_3$(94$\pm$45 pptv), N $O_3$$^{[-10]}$ (16$\pm$10 ppbv), S $O_4$$^{[-10]}$ (60$\pm$0 pptv), N $H_4$$^{+}$(71$\pm$6 pptv), N $a^{+}$(5$\pm$1 pptv), PAN(13$\pm$9 pptv), MeN $O_3$(3.5$\pm$1.5 pptv), 2-butyl N $O_3$(0.6$\pm$0.1 pptv), $H_2O$$_2$(1015$\pm$44 pptv), $C_2$C $l_4$(3.3$\pm$0.1 pptv), condensation nuclei(249$\pm$13c $m^{-3}$), and dew point(-8.5$\pm$5.3$^{\circ}C$) during this experiment..

  • PDF

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2008 (설비공학 분야의 최근 연구 동향: 2008년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Choi, Chang-Ho;Lee, Dae-Young;Kim, Seo-Young;Kwon, Yong-Il;Choi, Jong-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.12
    • /
    • pp.715-732
    • /
    • 2009
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2008. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends in thermal and fluid engineering have been surveyed in the categories of general fluid flow, fluid machinery and piping, new and renewable energy, and fire. Well-developed CFD technologies were widely applied in developing facilities and their systems. New research topics include fire, fuel cell, and solar energy. Research was mainly focused on flow distribution and optimization in the fields of fluid machinery and piping. Topics related to the development of fans and compressors had been popular, but were no longer investigated widely. Research papers on micro heat exchangers using nanofluids and micro pumps were also not presented during this period. There were some studies on thermal reliability and performance in the fields of new and renewable energy. Numerical simulations of smoke ventilation and the spread of fire were the main topics in the field of fire. (2) Research works on heat transfer presented in 2008 have been reviewed in the categories of heat transfer characteristics, industrial heat exchangers, and ground heat exchangers. Research on heat transfer characteristics included thermal transport in cryogenic vessels, dish solar collectors, radiative thermal reflectors, variable conductance heat pipes, and flow condensation and evaporation of refrigerants. In the area of industrial heat exchangers, examined are research on micro-channel plate heat exchangers, liquid cooled cold plates, fin-tube heat exchangers, and frost behavior of heat exchanger fins. Measurements on ground thermal conductivity and on the thermal diffusion characteristics of ground heat exchangers were reported. (3) In the field of refrigeration, many studies were presented on simultaneous heating and cooling heat pump systems. Switching between various operation modes and optimizing the refrigerant charge were considered in this research. Studies of heat pump systems using unutilized energy sources such as sewage water and river water were reported. Evaporative cooling was studied both theoretically and experimentally as a potential alternative to the conventional methods. (4) Research papers on building facilities have been reviewed and divided into studies on heat and cold sources, air conditioning and air cleaning, ventilation, automatic control of heat sources with piping systems, and sound reduction in hydraulic turbine dynamo rooms. In particular, considered were efficient and effective uses of energy resulting in reduced environmental pollution and operating costs. (5) In the field of building environments, many studies focused on health and comfort. Ventilation. system performance was considered to be important in improving indoor air conditions. Due to high oil prices, various tests were planned to examine building energy consumption and to cut life cycle costs.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2013 (설비공학 분야의 최근 연구 동향 : 2013년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.605-619
    • /
    • 2014
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2013. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and relative parts including orifices, dampers and ducts, fuel cells and power plants, cooling and air-conditioning, heat and mass transfer, two phase flow, and the flow around buildings and structures. Research issues dealing with home appliances, flows around buildings, nuclear power plant, and manufacturing processes are newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for general analytical model for desiccant wheels, the effects of water absorption on the thermal conductivity of insulation materials, thermal properties of Octadecane/xGnP shape-stabilized phase change materials and $CO_2$ and $CO_2$-Hydrate mixture, effect of ground source heat pump system, the heat flux meter location for the performance test of a refrigerator vacuum insulation panel, a parallel flow evaporator for a heat pump dryer, the condensation risk assessment of vacuum multi-layer glass and triple glass, optimization of a forced convection type PCM refrigeration module, surface temperature sensor using fluorescent nanoporous thin film. In the area of pool boiling and condensing heat transfer, researches on ammonia inside horizontal smooth small tube, R1234yf on various enhanced surfaces, HFC32/HFC152a on a plain surface, spray cooling up to critical heat flux on a low-fin enhanced surface were actively carried out. In the area of industrial heat exchangers, researches on a fin tube type adsorber, the mass-transfer kinetics of a fin-tube-type adsorption bed, fin-and-tube heat exchangers having sine wave fins and oval tubes, louvered fin heat exchanger were performed. (3) In the field of refrigeration, studies are categorized into three groups namely refrigeration cycle, refrigerant and modeling and control. In the category of refrigeration cycle, studies were focused on the enhancement or optimization of experimental or commercial systems including a R410a VRF(Various Refrigerant Flow) heat pump, a R134a 2-stage screw heat pump and a R134a double-heat source automotive air-conditioner system. In the category of refrigerant, studies were carried out for the application of alternative refrigerants or refrigeration technologies including $CO_2$ water heaters, a R1234yf automotive air-conditioner, a R436b water cooler and a thermoelectric refrigerator. In the category of modeling and control, theoretical and experimental studies were carried out to predict the performance of various thermal and control systems including the long-term energy analysis of a geo-thermal heat pump system coupled to cast-in-place energy piles, the dynamic simulation of a water heater-coupled hybrid heat pump and the numerical simulation of an integral optimum regulating controller for a system heat pump. (4) In building mechanical system research fields, twenty one studies were conducted to achieve effective design of the mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, and renewable energies in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment is mostly focused on indoor environment and building energy. The main researches of indoor environment are related to infiltration, ventilation, leak flow and airtightness performance in residential building. The subjects of building energy are worked on energy saving, operation method and optimum operation of building energy systems. The remained studies are related to the special facility such as cleanroom, internet data center and biosafety laboratory. water supply and drain system, defining standard input variables of BIM (Building Information Modeling) for facility management system, estimating capability and providing operation guidelines of subway station as shelter for refuge and evaluation of pollutant emissions from furniture-like products.

A Study on Performance of Energy Recovery Ventilator under Outdoor Conditions in Korea (국내 외기조건에서 폐열회수 환기장치의 성능에 관한 연구)

  • Kim, Il-Gyoum;Park, Woo-Cheul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.52-57
    • /
    • 2009
  • In this study, a simulation program has been developed to predict the performance of energy recovery ventilators fur various indoor and outdoor conditions. In order to get a fundamental data about domestic air condition, the heat recovery ventilator is selected with the product of the wind quantity $250m^3/h$ Japanese M companies which are satisfied at High Efficiency Certification Standards. At the case on which the heat recovery ventilator is established, heating load decreases by 69.1% and cooling load decreases by 59.4% in Seoul, and heating load decreases by 66.4% and cooling load decreases by 59.6% in Pusan. The maximum humidification load of winter or summer time with $0.737{\ell}/h$ or $1.008{\ell}/h$ occurred in March from Kangnung or August from Mokpo respectively. In Southern part region and East Sea of winter time, the condensation or frost on exhaust side dose not occurred on exhaust side, but the area of that outside is occurred. Therefore, the preventive measure from the area except a southern part region and the east coast area must be considered, in order to condense or frost not to occur on exhaustion side in winter.

A Study on Feasibility of Cloud Seeding in Korea (한반도에서의 인공증우 가능성에 대한 연구)

  • Chung, Kwan-Young;Eom, Won-Geun;Kim, Min-Jeong;Jung, Young-Sun
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.5
    • /
    • pp.621-635
    • /
    • 1998
  • The feasibility of cloud seeding in Korea is presented from analyses of precipitation, cloud amount, satellite data, and upper air data. The daily mean precipitation over Dae-Kwan-Ryong is the largest(~4.5 mm/day), while the intensity of precipitation (amount of yearly rainfall divided by the frequency of rain days) over Southern area is above 14 mm/day, which shows the largest in Korea. Both the daily mean and the intensity of precipitation over Andong area are the smallest with values of ~2.7 mm/day and ~11 mm/day, respectively. In the meanwhile, the occurrence frequency of appropriate cloud top temperature (-10'~-30') for cloud seeding over the region has a large value (~130 days/year). The precipitation patterns of the region vary with wind direction and intensity calculated from 43 AWSs(Automatic Weather Station) and the additional 7 rain guages which were installed along Northern and Southern part of the Sobaek mountain. The Sc(Stratocumulus) cloud type over Andong is frequently observed, and Cirrus and Altostratus next. From the results, it is estimated that the feasibility of cloud seeding over the area would be high if a proper strategy of cloud seeding is set up. LCL (Lifting Condensation Level) and CCL (Convective Condensation Level) have the most frequency in 1000-950 hPa being occupied 4/9 of total analysis period and in 400-500 hPa, respectively, with both small variations from season to season. The correlation between vapor mixing ratio and CCL is the highest in Summer and the lowest in Winter. It means that the height of cumulus in Summer is high with an abundant water vapor but vice versa in Winter, and that the strategy of cloud seeding should be different with seasons.

  • PDF

Evaluation of Indoor Mold Exposure Level in dwelling Using DNA-Based Mold Assessment Method (DNA 기반 곰팡이 평가기법을 활용한 주택의 실내 곰팡이 노출수준 평가)

  • Hwang, Eun-Seol;Seo, Sung Chul;Lee, Ju-Yeong;Ryu, Jung-min;Kwon, Myung-Hee;Chung, Hyen-Mi;Cho, Yong-Min;Lee, Jung-Sub
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.4
    • /
    • pp.382-392
    • /
    • 2018
  • Objective: Allergic diseases such as asthma due to fungal exposure in houses have increased, and proper management is urgent. Mold can grow in the air, floor, walls, and other areas according to environmental conditions, and there are many limitations to the conventional methodology for examining fungal exposure. For this reason, the degree of fungal contamination is being evaluated by ERMI (Environmental Relative Moldiness Index), a quantitative analysis method proposed by the EPA. In this study, we compared ERMI values between water-damaged dwellings and non-damaged ones to evaluate the effectiveness of Korean ERMI values. We also explored the association of ERMI values with the level of airborne mold and characteristics of dwellings. Methods: Floor dust was collected after installing a Dustream collector on the suction port of a vacuum cleaner. The collected samples were filtered to remove only 5 mg of dust, and DNA was extracted using the FastDNA SPIN KIT protocol. Results: The ERMI values were found to be 19.6 (-6.9-58.8) for flooded houses, 7.5 (-29.2-48.3) for leaks/condensation, and 0.8 (-29.2-37.9) for non-damaged dwellings. The airborne concentration of mold for flooded, leakage or condensed, and non-damaged houses were $684CFU/m^3$, $566CFU/m^3$, and $378CFU/m^3$, respectively. The correlation between ERMI values and the levels of airborne mold was low (R = 0.038), but a weakly significant association of the ERMI values with the concentration of particulate matter ($PM_{10}$) was observed as well(R=0.231,P<0.05). Conclusions: Our findings show that the reference value using ERMI can be used to distinguish water-damaged and non-damaged dwellings. It is believed that ERMI values could be a promising tool for assessing long-term fungal exposure in dwellings.

Relationships between a Calculated Mass Concentration and a Measured Concentration of PM2.5 and Respirable Particle Matter Sampling Direct-Reading Instruments in Taconite Mines (타코나이트 광산 공정에서의 실시간 질량측정기기와 실시간 수농도의 환산에 의한 질량농도와의 연관성)

  • Chung, Eun-Kyo;Jang, Jae-Kil;Song, Se-Wook;Kim, Jeongho
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.1
    • /
    • pp.65-73
    • /
    • 2014
  • Objectives: The purposes of this study are to investigate workers' exposures to respirable particles generated in taconite mines and to compare two metric methods for mass concentrations using direct-reading instruments. Methods: Air monitorings were conducted at six mines where subjects have been exposed primarily to particulate matters in crushing, concentrating, and pelletizing processes. Air samples were collected during 4 hours of the entire work shift for similarly exposure groups(SEGs) of nine jobs(N=37). Following instruments were employed to evaluate the workplace: a nanoparticle aerosol monitor(particle size range; 10-1000 nm, unit: ${\mu}m^2/cc$, Model 9000, TSI Inc.); DustTrak air monitors($PM_{10}$, $PM_{2.5}$, unit: $mg/m^3$, Model 8520, TSI Inc.); a condensation particle counter(size range; 20-1000 nm, unit: #/cc, P-Trak 8525, TSI Inc.); and an optical particle counter(particle number by size range $0.3-25{\mu}m$, unit: #/cc, Aerotrak 9306, TSI Inc.). Results: The highest airborne concentration among SEGs was for furnace operator followed by pelletizing maintenance workers in number of particle and surface area, but not in mass concentrations. The geometric means of $PM_{2.5}$ by the DustTrak and the Ptrak/Aerotrak were $0.04{\mu}m$(GSD 2.52) and $0.07{\mu}m$(GSD 2.60), respectively. Also, the geometric means of RPM by the DustTrak and the Ptrak/Aerotrak were $0.16{\mu}m$(GSD 2.24) and $0.32{\mu}m$(GSD 3.24), respectively. The Pearson correlation coefficient for DustTrak $PM_{2.5}$ and Ptrak/Aerotrak $PM_{2.5}$ was 0.56, and that of DustTrak RPM and Ptrak/Aerotrak RPM was 0.65, indicating a moderate positive association between the two sampling methods. Surface area and number concentration were highly correlated($R^2$ = 0.80), while $PM_{2.5}$ and RPM were also statistically correlated each other($R^2$ = 0.79). Conclusions: The results suggest that it is possible to measure airborne particulates by mass concentrations or particle number concentrations using real-time instruments instead of using the DustTrak Aerosol monitor that monitor mass concentrations only.

A Study on the Drop-in Tests of a Small Ice Maker Using R-404A Replacements R-448A and R-449A (소형 제빙기에 사용되는 R-404A 대체 R-448A, R-449A의 Drop-in Test에 대한 연구)

  • Lee, Byungmoo;Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.21-27
    • /
    • 2019
  • R-404A, which is used widely in small-scale ice makers, is scheduled to be phased out because of its high global warming potential. In this study, drop-in tests were conducted using R-448A and R-449A, which replace R-404A, to modify the outdoor air and supply water temperatures. The results showed that the daily ice production rate of R-404A was 5.3% higher than that of R-448A and 4.2% higher than that of R-449A. This was attributed to the larger vapor density of R-404A, which resulted in a larger mass flow rate in the system. Between R-448A and R-449A, R-448A yielded a larger amount of ice at low air and water temperatures, whereas R-449A yielded a larger amount of ice at high air and water temperatures. The daily power consumption of R-404A was approximately 10% larger than those of R-448A and R-449A. The resulting COPs of R-448A and R-449A was similar, only 3.0% larger than that of R-404A. The literature survey showed that the condensation or evaporation data of R-448A or R-449A are very limited, and research on this issue is recommended.

Characteristics of Temperature, Humidity and PPF Distribution by Covering Method and Environmental Control in Double Covering Greenhouse (이중피복 온실의 피복방법과 환경조절에 따른 온습도 및 광합성유효광량자속 분포 특성)

  • Lee, Hyun-Woo;Sim, Sang-Youn;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.21 no.1
    • /
    • pp.1-11
    • /
    • 2012
  • The objective of the present study is to provide data needed to find double covering method to be able to improve environment of temperature, humidity and PPF in tomato greenhouse. The distribution charts of temperature, humidity and PPF which were measured in environment control conditions such as thermal insulation, air heating, roof ventilation and air fog cooling in conventional and air inflated double layers greenhouses were drawn and analysed. The thermal insulation effect of the air inflated greenhouse was the same as that of conventional greenhouse because the temperature between insulation curtain and roof covering material was equal in heating season. The ventilation effect of the air inflated greenhouse was superior to the conventional greenhouse. The temperature distribution in the fog cooled greenhouse was uniform and the cooling effect was about $3.5^{\circ}C$. The condensation on the roof covering surface could be controlled by removing the moisture between insulation curtain and roof covering by using humidifier. The PPF of conventional greenhouse was more decreased than the air inflated greenhouse as time went by because the transmittance of conventional greenhouse declined by dust collected on the inside plastic film owing to rolling up and down operation for ventilation.