• Title/Summary/Keyword: Air Compressor

Search Result 1,025, Processing Time 0.026 seconds

Experimental Study on Application of an Anomaly Detection Algorithm in Electric Current Datasets Generated from Marine Air Compressor with Time-series Features (시계열 특징을 갖는 선박용 공기 압축기 전류 데이터의 이상 탐지 알고리즘 적용 실험)

  • Lee, Jung-Hyung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.127-134
    • /
    • 2021
  • In this study, an anomaly detection (AD) algorithm was implemented to detect the failure of a marine air compressor. A lab-scale experiment was designed to produce fault datasets (time-series electric current measurements) for 10 failure modes of the air compressor. The results demonstrated that the temporal pattern of the datasets showed periodicity with a different period, depending on the failure mode. An AD model with a convolutional autoencoder was developed and trained based on a normal operation dataset. The reconstruction error was used as the threshold for AD. The reconstruction error was noted to be dependent on the AD model and hyperparameter tuning. The AD model was applied to the synthetic dataset, which comprised both normal and abnormal conditions of the air compressor for validation. The AD model exhibited good detection performance on anomalies showing periodicity but poor performance on anomalies resulting from subtle load changes in the motor.

The Effects of Air Injection in Compressor Exit on the Response Performance of a Turbocharged Diesel Engine under the Operating Conditions of Rapid Acceleration. (터보과급디젤기관의 급가속 운전시 압축기출구에의 공기분사가 응답성능에 미치는 영향)

  • 박상규;최낙정
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.110-119
    • /
    • 2000
  • In this paper, an experimental study is carried out under the operating conditions of low speed and rapid acceleration in order to investigate and improve the response characteristics of a turbocharged diesel engine with radial turbine driven by exhaust gas. A rapid acceleration for investigating the response performance is applied to the fuel-pump rack of the engine from 0-10% to 0-40% in steps of 10%, and accelerating time of 1, 2 and 3 seconds is applied to the engine. Further experiment for improving the low speed torque and acceleration performance is also performed by means of injecting air into the inlet manifold at compressor exit during the period of low speed and application of a rapid acceleration. The effects of air injection on the response performance are represented at subjected engine speed with the changes of response performance factors such as air injection pressure, air injection period, accelerating rate, accelerating time and load. From the experimental results obtained throughout this study, it is shown that air injection into the inlet manifold at compressor exit is closely related to the improvement of low speed and acceleration performance of a turbocharged diesel engine.

  • PDF

Computer Simulation of an Automotive Air-Conditioning in a Transient Mode

  • Oh, Sang-Han;Won, Sung-Pil
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.4
    • /
    • pp.220-228
    • /
    • 2002
  • The cool-down performance after soaking is very important in an automotive air-conditioning system and is considered as a key design variable. Therefore, transient characteristics of each system component are essential to the preliminary design as well as steady-state performance. The objective of this study is to develop a computer simulation model and ostinato theoretically the transient performance of an automotive air-conditioning system. To do that, the mathematical modelling of each component, such as compressor, condenser, receiver/drier, expansion valve, and evaporator, is presented first of all. The basic balance equations about mass and energy are used in modelling. For detailed calculation, condenser and evaporator are divided into many sub-sections. Each sub-section is an elemental volume for modelling. In models of expansion valve and compressor, dynamic behaviors are not considered in this analysis, but the quasisteady state ones are just considered, such as the relation between mass flow rate and pressure drop in expansion device, polytropic process in compressor, etc. Also it is assumed that there are no heat loss and no pressure drop in discharge, liquid, and suction lines. The developed simulation model is validated by comparing with the laboratory test data of an automotive air-conditioning system. The overall time-tracing properties of each component agreed well with those of test data in this case.

Transient Simulation of an Automotive Air-Conditioning System (자동차 에어컨 비정상과정 시뮬레이션)

  • 오상한;원성필
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.11
    • /
    • pp.1089-1096
    • /
    • 2001
  • The cool-down performance after soaking is very important in an automotive air-conditioning system and is considered as the key design variable. Therefore, understanding of the overall transient characteristics of the system is essential to the preliminary design as well as steady-state characteristics. The objective of this study is to develop a computer simulation model and estimate theoretical1y the transient performance of an automotive air-conditioning system. To accomplish this, a mathematical modelling of each component, such as compressor, condenser, expansion valve, and evaporator, is presented first of all. For a detailed calculation, condenser and evaporator are divided into many subsections. Each sub-section is an elemental volume for modelling. In models of expansion valve and compressor, dynamic behaviors are not considered in an attempt to simplify the ana1ysis, but the quasi-static ones are just considered, such as the relation between mass flow rate and pressure drop in expansion device, polytropic process in compressor, etc. The developed simulation model is validated with a comparison to laboratory test data of an automotive air-conditioning system. The overall time-tracing properties of each component agreed fairly well wish those of test data in this case.

  • PDF

A Study on the Noise Reduction of Reciprocating Type Air Compressors

  • Lee Kwang-Kil;Kim Kwang-Jong;Lee Gwan-Hyung;Park Jae-Suk;Son Doo-ik;Kim Bong-Ki;Lee Dong-Ju
    • International Journal of Safety
    • /
    • v.3 no.1
    • /
    • pp.6-9
    • /
    • 2004
  • This paper deals with the noise evaluation technique of a reciprocating air-compressor and its noise reduction. The reciprocating air-compressors are widely used in the small, medium sized industrial firms, and lots of their employees are affected and irritated by their noise in the workplace. Thus, noise control actions should be taken appropriately by considering the hearing loss due to the occupational noise exposure. Lead-wrapping techniques are employed to identify the contribution of principal noise sources which are generally known as motor, belts, suction/discharge valves, moving pistons, and flow-induced noise caused by edges or discontinuities along the flow path e.g. expansions, contractions, junctions and bends etc .. As a result, main noise sources of the air-compressor can be categorized by the suction/discharge noise, valve noise, and compressed-air tank noise. Based on the investigations, mufflers are designed to reduce both the suction/discharge noise and the compressed-air tank noise. Instead of the conventional valve plate, polyethylene resin is used as a new one for the reduction of valve impact noise. In addition, attempts are made to reduce the valve noise propagation to the cylinder head and the compressor tank by using the insulation casings. As a result of the countermeasure plans, it can be achieved that the noise reduction of the air-compress is up to 10dB.

A Study on the Performance Characteristics of a Heat Pump System using Stack Wast Heat in Fuel Cell Vehicles (스택 폐열을 이용한 연료전지 자동차용 열펌프 시스템의 성능 특성에 관한 연구)

  • Jeon, Byungyong;Ko, Wonbin;Park, Youn Cheol
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.8
    • /
    • pp.325-330
    • /
    • 2016
  • This study was conducted to develop a heating system for a fuel cell-driven electric vehicle. The system consists of a compressor, an expansion device and three heat exchangers. A conventional air source heat exchanger is used as primary heat exchanger of the system, and an additional water source heat exchanger is used as a pre-heater to supply heat to the upstream air of the primary heat exchanger. On the other hand, the third heat exchanger consists of a water-to-refrigerant heat exchanger. The heat source of the pre-heater and the water-refrigerant heat exchanger is the waste heat from the fuel cell's stack. In the experiment, the indoor and the outdoor air temperature were fixed, and the compressor speed, EEV opening and waste heat temperature were varied. The results indicate that the $COP_h$ of the proposed system is 3.01 when the system is operating at a 1,200 rpm compressor speed, 50% EEV opening, and $50^{\circ}C$ waste heat source temperature in air pre-heater operation. However, when the system uses a water-refrigerant heat exchanger, the $COP_h$ increases to up to 9.42 at the same compressor speed and waste heat source temperature with 75% EEV openings.

The Lubrication Characteristics of Rotary Compresssor for refrigeration & air-conditioning (Part I; The analysis of Rolling Piston behavior ) (냉동, 공조용 로터리 콤프레서의 윤활 특성 제1보;롤링 피스톤의 거동해석)

  • 조인성;김진문;백일현;정재연
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.7-16
    • /
    • 1996
  • Rapid increase of refrigeration & air-conditioning system( r & a system ) in modern industries brings attention to the urgency of development as a core technology in the area. And it required to the compatibility problem of r & a system to alternative refrigerant for the protection of environment. Then, it is requested to research about the lubrication characteristics of refrigerant compressor which is the core thechnology in the r & a system. The study of lubrication characteristics in the critical sliding component is essential for the design of refrigerant compressor. Therefore, theoetical investigation of the lubrication characteristics of rotary compressor for r & a system is studied. And the Runge-Kutta method is used for the analysis of the behavior of rolling piston in the rotary compressor. The results show that the rotating speed of shaft and the discharge pressure have an important effect upon the angular velocity of the rolling piston. This results give important basic data for the further lubrication analysis and design of the rotary compressor.

  • PDF

A Numerical Study on Heat Transfer in a Reciprocating Compressor for a Domestic Refrigerator (소형 냉장고용 왕복동식 압축기의 열전달에 관한 수치해석 연구)

  • Sim Yun-Hee;Youn Young;Park Youn Cheol
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.4
    • /
    • pp.377-385
    • /
    • 2005
  • An analytical model was developed using the lumped mass parameter method to estimate temperature distribution of metal parts and refrigerant of the hermetic reciprocating compressor, All of the lumped mass has been equated with the first law of thermodynamics. In the delivered equation, correlations of heat transfer coefficient in the heat transfer equation were taken from open literature. The equations are solved by Gauss-Jordan method simultaneously. To verify the developed numerical program, an experiment was conducted with a domestic refrigerator. The compressor which had been installed at the bottom of the experimental refrigerator was modified to measure internal temperature. Model verification test was conducted at $30^{\circ}C$ outdoor temperature with variation of compressor cooling conditions. As a result, there is a good consistency between calculated temperature and measured one.

Conceptual design of expander-compressor unit for fuel cell systems (연료전지용 팽창기-압축기 개념설계)

  • Ahn, Jong-Min;Kwon, Tae-Hun;Kim, Hyun-Jin;Yang, Si-Won
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.578-583
    • /
    • 2006
  • This paper introduces conceptual design of scroll expander-compressor unit for fuel cell. Since air discharged out of the fuel cell stack after reaction has still high pressure energy, some power can be extracted out of it by directing it to pass through an expanding device so that the extracted power can be used to drive an auxiliary compressor. For this purpose, a scroll type expander coupled to a scroll type compressor was designed: orbiting scroll of the expander and that of the compressor were made to share three of common drive pins installed in the mid frame plate, and central cavity in the mid-plate was used as a back pressure chamber to provide axial compliance for both orbiting scrolls. Performance analysis for the expander showed that the shaft power of the expander could reduce the auxiliary power consumption in the fuel cell by about one third at the scroll clearance of $10{\mu}m$.

  • PDF

Measuring Inside Diameter with Electronic Micrometer (전기 마이크로미터를 이용한 내경측정)

  • 이헌민;배영주;이만형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.491-494
    • /
    • 1995
  • In this study, we presented a system to measure inside diameters of parts of compressor. This system solved problems of air micrometer and improved measurement accuracy by using linear variable differential transformer. The system was designed for production line which require accurate and reliable measuring system. And the system is easier and faster to use than air micrometer and can be applied various measuring area.

  • PDF