• Title/Summary/Keyword: Air Cavity

Search Result 504, Processing Time 0.023 seconds

Numerical simulation of air layer morphology on flat bottom plate with air cavity and evaluation of the drag reduction effect

  • Hao, W.U.;Yongpeng, O.U.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.510-520
    • /
    • 2019
  • To investigate the morphology characteristics of air layer in the air cavity, a numerical method with the combination of RANS equations and VOF two-phase-flow model is proposed for a plate with air cavity. Based on the model above, the dynamic and developmental process of air layer in the air cavity is studied. Numerical results indicate that the air layer in the plate's air cavity exhibits the dynamic state of morphology and the wavelength of air layer becomes larger with the increasing speed. The morphology of air layer agrees with the Froude similarity law and the formation of the air layer is not affected by the parameters of the cavity, however, the wave pattern of the air layer is influenced by the parameters of the cavity. The stable air layer under the air cavity is important for the resistance reduction for the air layer drag reduction.

Influences of Air Cavity on the Sensitivity of a Mandrel Type fiber Optic Acoustic Sensor (Air cavity가 맨드릴형 광-음향센서의 감도특성에 미치는 영향)

  • 임종인;노용래
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.3-7
    • /
    • 2000
  • This paper is on the sensitivity characteristics of a concentric composite mandrel type fiber optic acoustic sensor with inclusion of an air cavity With the finite element method, we have analyzed sensitivity variation of the sensor in relation to its geometrical factors such as thickness of the air cavity, thickness of the foaming layer, and the ratio of inner diameter/outer diameter of the mandrel. Results of the analysis suggest a thicker air cavity, a thinner foaming layer, and a smaller ratio of the inner diameter/outer diameter of the mandrel to be desirable for higher sensitivity. The sensor structure designed with the above rules provides the sensitivity of about 0.8dB higher than that of a normal concentric composite mandrel sensor without the inherent air cavity.

  • PDF

Performance Analysis of Summertime Heat Transfer Characteristics of the Double Skin Window for Plant Factory (식물공장 이중창호의 하절기 열전달 성능 분석)

  • So, Jae-Hyun;Kim, Woo-Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.4
    • /
    • pp.351-357
    • /
    • 2012
  • To reduce the summertime cooling load of a plant factory, a concept design was performed for the double skin window which utilizes the low temperature air from a ground coupled heat exchanger. The design parameters were selected as the number of cavity air inlet, the cavity thickness, the location of cavity air inlet, and the configuration of cavity air outlet. A parametric study was conducted in a systematic way to evaluate the heat transfer characteristics of the double skin window. As the number of cavity air inlet and the cavity thickness increase, the heat flux from outside air to indoor air was decreased. The effect of the location of cavity air inlet was not significant and the larger cavity air outlet area gave us relatively better heat blocking performance from outside hot air. This study demonstrated that it is possible to develop an improved double skin window by utilizing a ground coupled heat exchanger.

A Study on Rebuildup of 6MV X-ray by the Cavity (공동에 의한 6MV X선의 재선량증가 현상에 관한 연구)

  • Cho, Moon-June;Choi, Eun-Kyung;Chung, Woong-Ki;Kang, Wee-Saing;Park, Charn-Il
    • Radiation Oncology Journal
    • /
    • v.7 no.1
    • /
    • pp.113-121
    • /
    • 1989
  • The inclusion of air filled cavities in treatment fields creates a potential dosimetric problem due to the rebuildup phenomenon near the air-tissue interface using a simulated phantom, such as air gap, air cylinder, and air cavity, the amount of rebuldup along the various field sizes and air cavity dimensions was measured. The results are as follows. 1. As the field size becomes larger in comparison with the cavity size, or as the cavity size gets bigger when the field size is equal to the cavity size, rebuildup decreases. 2. When the distance between the phantom surface and the air cavity is less than 1.5cm, there is prominent rebuildup. And when the distance is more than 1.5cm, rebuildup is relatively constant, 3. The change according to the depth of the cavity is affected by the field size and the cavity size, rebuildup usually increases when the depth of the cavity increases. 4. It is suggested that tissue equivalent material should be applied on the skin to make tissue thickness over the air cavity more than 1.5cm and that the field size should include the air cavity with at least 1cm margin.

  • PDF

The Influence of Air Cavity on Interface Doses for Photon Beams (X선치료 조사야 내 공동의 존재에 따른 선량분포의 측정)

  • Chung Se Young;Kim Young Bum;Kwon Young Ho;Kim You Hyun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.10 no.1
    • /
    • pp.69-77
    • /
    • 1998
  • When a high energy photon beam is used to treat lesions located in the upper respiratory air passages or in maxillary sinus, the beams often must traverse an air cavity before it reaches the lesion. Because of this traversal of air, it is not clear that the surface layers of the lesion forming the air-tumor tissue interface will be in a state of near electronic equilibrium; if they are not, underdosing of these layers could result. Although dose corrections at large distances beyond an air cavity are accountable by attenuation differences, perturbations at air-tissue interfaces are complex to measure or calculate. This problem has been investigated for 4MV and 10MV X-ray beams which are becoming widely available for radiotherapy with linear accelerator. Markus chamber was used for measurement with variouse air cavity geometries in X-ray beams. Underdosing effects occur at both the distal and proximal air cavity interface. The magnitude depended on geometry, energy, field sizes and distance from the air-tissue interfaces. As the cavity thickness increased, the central axis dose at the distal interface decreased. Increasing field size remedied the underdosing, as did the introduction of lateral walls. Fellowing a $20{\times}2{\times}2\;cm^3$\;air\;cavity,\;4{\times}4\;cm\;field\;there\;was\;an\;11.5\%\;and\;13\%\;underdose\;at\;the\;distal\;interface,\;while\;a\;20{\times}20{\times}2\;cm^3\;air\;cavity\;yielded\;a\;24\%\;and\;29\%$ loss for the 4MV and 10MV beams, respectively. The losses were slightly larger for the 10MV beams. The measurements reported here can be used to guide the development of new calculation models under non-equilibrium conditions. This situation is of clinical concern when lesions such as larynx and maxillary carcinoma beyond air cavities are irradiated.

  • PDF

A Study on the Absorption Characteristics of Absorbents in Duct System with the Air Cavity (공기층을 갖는 공조덕트 구조물에서 흡음재의 흡음특성에 관한 연구)

  • 김찬묵;김도연;방극호
    • Journal of KSNVE
    • /
    • v.10 no.5
    • /
    • pp.892-897
    • /
    • 2000
  • In this paper, experimental methods to find acoustic characteristics of acoustically treated air-conditioning duct system are proposed. Existing methods to analyze acoustic properties of duct with absorbent material have dilemma which has to assume the wave in duct to be a plane wave. Under this assumption. applicable frequency limitation makes accurate analysis of practical air-conditioning system impossible. In order to analyze the properties of in-lined treated absorbent with high degree of accuracy, in this experiments the range of exciting frequency of sound source is broadband, which means that source speaker excited higher mode of in-duct sound field. Also, to define the relations of air cavity to the acoustic characteristics, acoustic experiments on ducts with air cavity of different depth are operated. In conclusion, air-cavity makes the absorbing ability of duct improved in low frequency range. Due to the interactions between the air cavity depth and the depth of absorbents, according to depth of cavity, the magnitude of absorption coefficients vs frequencies in specific range is changed. In lower frequency range, the absorption of sound energy by air cavity is more dominant than by absorbent itself, in higher range, the inversion is true.

  • PDF

A Study on the Characteristics of an Air Cavity Attached Under a Flat Plate (평판에 형성된 공기공동 특성에 관한 연구)

  • Kim, Jong-Hyun;Oh, Jae-Young;Seo, Dae-Won;Lee, Seung-Hee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.5
    • /
    • pp.396-403
    • /
    • 2011
  • The concept of an air lubrication has long been an object of attention since it can be utilized to reduce the frictional resistance, and what is more, it is eco-friendly. The present study examines the basic characteristics of an air cavity with intention of applying the air lubrication technology to the reduction of the resistance of a ship without excessive power increment. For the purpose, an air cavity was created at the bottom of a flat plate by injecting air behind a backward step and the hydrodynamic properties of the air cavity and the surrounding flow has been investigated experimentally and numerically. The influence of the step height and the air flow rate have been more carefully studied since they are presumed to be the main parameters affecting the characteristics of an air cavity. The results indicates that the shapes of the air cavities attached on the flat plate become "U" or "V" type depending on the incoming flow velocity and air flow rate. The study also confirms that the length of the air cavity increases with increase in air flow rate but there is a certain critical limit in the flow rate above which increase in the air cavity length is no more evident.

A study on the noise reduction of practical duct system with the air cavity (공기층을 갖는 실제덕트 구조물에서의 소음저감에 관한 연구)

  • Kim, Chan-Mook;Lee, Doo-Ho;Bahng, Keuk-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1687-1692
    • /
    • 2000
  • In this paper, experimental methods to find acoustic characteristics of acoustically treated air-conditioning duct system are proposed. Existing methods to analyze acoustic properties of duct with absorbent material have a dilemma which has to assume the wave in duct to be a plane wave. Under this assumption, applicable frequency limitation makes accurate analysis of practical air-conditioning system impossible. In order to analyze the properties of in-lined treated absorbent with high degree of accuracy, in this experiments the range of exciting frequency of sound source is broadband, which means that source speaker excites higher mode of in-duct sound field. Also, to define the relations of air cavity to the acoustic characteristics, acoustic experiments on ducts with air cavity of different depth are operated. In conclusion, air-cavity makes the absorbing ability of duct improved in low frequency range. Due to the interactions between the air cavity depth and the depth of absorbents, according to depth of cavity, the magnitude of absorption coefficients vs frequencies in specific range is changed. In lower frequency range, the absorption of sound energy by air cavity is more dominant than by absorbent itself, in higher range, the inversion is true.

  • PDF

Multiphase Simulation of Rubber and Air in the Cavity of Mold

  • Woo, Jeong Woo;Yang, Kyung Mi;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • v.51 no.4
    • /
    • pp.263-268
    • /
    • 2016
  • In the polymer shaping process that uses molds, the quality of the molded products is determined not only by the flow of the (molten) polymer but also by the air venting in the cavity. Inadequate air venting in the cavity can cause defects in the product, such as voids, short shot, or black streaks. As it is critical to consider the location and size of the vents for proper venting of the air in the cavity, a method that predicts the flow of air and material is required. The venting of air by the flow of rubber inside the cavity was simulated by using a multi-phase computational fluid dynamics method. Through computer simulation, the interface of rubber and air over time was predicted. Then, the velocity and pressure distribution of the venting air were observed. Our research proposes a fundamental method for analyzing the multi-phase flow of polymer materials and air inside the cavity of a mold.

Development of High-Quality LTCC Solenoid Inductor using Solder ball and Air Cavity for 3-D SiP

  • Bae, Hyun-Cheol;Choi, Kwang-Seong;Eom, Yong-Sung;Kim, Sung-Chan;Lee, Jong-Hyun;Moon, Jong-Tae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.4
    • /
    • pp.5-8
    • /
    • 2009
  • In this paper, a high-quality low-temperature co-fired ceramic (LTCC) solenoid inductor using a solder ball and an air cavity on a silicon wafer for three-dimensional (3-D) system-in-package (SiP) is proposed. The LTCC multi-layer solenoid inductor is attached using Ag paste and solder ball on a silicon wafer with the air cavity structure. The air cavity is formed on a silicon wafer through an anisotropic wet-etching technology and is able to isolate the LTCC dielectric loss which is equivalent to a low k material effect. The electrical coupling between the metal layer and the LTCC dielectric layer is decreased by adopting the air cavity. The LTCC solenoid inductor using the solder ball and the air cavity on silicon wafer has an improved Q factor and self-resonant frequency (SRF) by reducing the LTCC dielectric resistance and parasitic capacitance. Also, 3-D device stacking technologies provide an effective path to the miniaturization of electronic systems.

  • PDF