• 제목/요약/키워드: Air Bearing System

검색결과 218건 처리시간 0.028초

공기 베어링 주축의 자동설계시스템 개발 (Development of the Automated Calculation System for Air-Bearing Spindle)

  • ;정원지;;김대성;이춘만
    • 한국공작기계학회논문집
    • /
    • 제13권5호
    • /
    • pp.38-48
    • /
    • 2004
  • Recently the use of high-speed equipment in machine-tool industry has greatly increased, which requires the development of prognostics and prediction methods on the design stage. Conversion of the test/experiments stage from real to virtual reality will not only significantly reduce the design and manufacturing cost, but will also increase design quality. This paper shows how it is possible to develop the automated system for the design calculations of the air-bearing spindles. First, the general calculation method is introduced. It contains several steps, namely, geometry identification, pressure calculation, stiffiness calculation, dynamics characteristics calculation. For geometry identification reducing spindle shaft to rings was proposed, which helps to automate the calculation process. For pressure calculation the Peshti method was implemented. For stiffiness calculation the analysis was made, which shown the necessity of correct calculation step selection. Then the system of ordinary differential equations containing influence coefficients was evolved, which is used for trjectories calculation. The graphical representation of the calculation results shows the dynamic behavior of the spindle unit concerning various working conditions. Finally, this automated system is illustrated by an example of the air-bearing spindle calculation.

공작기계용 고속주축계의 오일에어윤활특성에 관한 연구 (I) 공급유량, 주축회전수 및 주축계 구조의 영향 (Oil-Air Lubrication Characteristics of a High Speed Spindle System for Machine Tools(I) Effect of Oil Supply Rate, Rotational Spindle Speed and Spindle System Structure)

  • 김석일;최대봉;박경호
    • 대한기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.351-358
    • /
    • 1993
  • Recently a high speed spindle system for machine tools has attracted considerable attention to reduce the machining time, to improve the machining accuracy, to perform the machining of light metals and hard materials and to unite the cutting and grinding processes. In this study, a high speed spindle system is developed by applying the oil-air lubrication method, angular contact ball bearings, injection nozzles with dual orifices and so on. And a lubrication experiment for evaluating the performance of the spindle system is carried out. Especially, in order to establish the lubrication conditions related to the development of a high speed spindle system, the effects of oil supply rate, rotational spindle speed and so on are studied and discussed on the bearing temperature rise, bearing temperature distribution and frictional torque. And the effect of spindle system structure on the bearing temperature distribution is investigated.

하이브리드 외부가압 공기베어링에서 노즐 위치에 따른 부하지지력 특성 (The development of the air-spindle for using to machining the die and mold)

  • 이득우;이종렬;황성철;이준석
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 추계학술대회논문집 - 한국공작기계학회
    • /
    • pp.466-470
    • /
    • 2000
  • Externally pressurized air journal bearing has been widely used in high-speed spindle system and precision machinery because of its characteristics such as substantially low frictional loss, low heat generation and averaging effect leading better running accuracy. But air journal bearing have a disadvantage of the low load capacity due to the low viscosity. In this paper, The air journal bearing design to overcome the defects of air bearing such as low stiffness and dimping coefficients was investigated theoretically.

  • PDF

LCD 검사 장비용 패드형 에어베어링 설계 (Design of Pad Type Air-Bearing for LCD Inspection)

  • 오현성;이상민;박정우;김용우;이득우
    • 한국정밀공학회지
    • /
    • 제24권9호
    • /
    • pp.103-109
    • /
    • 2007
  • LCD (Liquid Crystal Display) is widely used electronic product. It needs too many processes such as PECVD (Plasma Enhanced Vapor Deposition), Sputtering, Photo-lithography, Dry etch. Each process is important but inspection process is more important because most companies emphasis on the six sigma. Recently, LCD inspection system is composed with inlet, inspector, outlet air pads. LCD is inspected on air pad which is shooting air from air hole. This paper studies on pad design of air bearing for LCD inspection to minimize LCD fluctuation. This design is able to reduce fluctuation and then satisfies CCD inspectional range. Also inspection pad needs to adequate stable area.

씰리스 실린더 특성 해석에 관한 연구 (Characteristics Analysis of Sealless Cylinders)

  • 서현석;김동수;유찬수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.824-827
    • /
    • 2003
  • The study of Sealless Cylinder is presented. The cylinder has a piston with air bearing. The piston has a partly cylindrical and partly conical shape. The description of system geometry is follows by the flow rate equations. Then pressure distribution and Bearing force equations are derived. Several non dimensional parameters are suggested. The relationship among bearing force, leakage flow and geometry of the bearing is investigated by simulation. And determination method for optimal design of sealless cylinder is given. A prototype of seatless cylinder which had rod bearing with four pockets, five pockets, and six pockets was built respectively.

  • PDF

씰리스 실린더 모델링 및 시뮬레이션 (Modelling and Simulation of Sealless Cylinders)

  • 김동수;서현석;최병오
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1911-1915
    • /
    • 2003
  • The study of Sealless Cylinder is presented. The cylinder has a piston with air bearing. The piston has a partly cylindrical and partly conical shape. The description of system geometry is follows by the flow rate equations. Then pressure distribution and Bearing force equations are derived. Several non dimensional parameters are suggested. The relationship among bearing force, leakage flow and geometry of the bearing is investigated by simulation. And determination method for optimal design of sealless cylinder is given. A prototype of sealless cylinder which had rod bearing with four pockets, five pockets, and six pockets was built respectively.

  • PDF

자기베어링 구동용 전자석의 흡인력에 대한 수학적 모델링 (Mathematical Modeling about Magnetic Attractive Force of Magnetic Bearing)

  • 최교호;양주호;정광교
    • 동력기계공학회지
    • /
    • 제16권3호
    • /
    • pp.64-68
    • /
    • 2012
  • Because the magnetic bearing supports levitating body without contact, wear, noise and vibration are very small comparing with mechanical bearings, it is very useful to high revolution machinery. In general, the magnetic attractive force function that is proportional to square of control current(x), and inversely proportional to square of an air gap(i) has been widely used. This paper proposed the new magnetic attractive force function that is proportional to cube of the control current, and inversely proportional to square of the air gap. The function was optimized to minimize the cost function that is the percentage of deviation about the change of a proportional constant(k), using the experimental data, ie, control currents and air gaps.

냉동.공조용 로터리 콤프레서의 축심궤적 해석 (The Analysis of Shaft Center Locus in the Refrigeration & Air-conditioning Rotary Compressor)

  • 조인성;장원수;김진문;김동우;오석형;정재연
    • Tribology and Lubricants
    • /
    • 제12권2호
    • /
    • pp.65-73
    • /
    • 1996
  • Rapid increase of Refrigeration and Air conditioning system in modem industries brings attention to the urgency of core technology development in the area. This paper presents theoretical investigation of the lubrication characteristics of rotary compressor for refrigeration and air conditioning. In order to analyze the lubrication characteristics of the main & sub bearing of rotary compressor, the bearing force and locus of shaft center are analyzed by the dynamic analysis of rotary compressor and numerical analysis of Reynolds equation as the operating condition is changed in various ways. In this paper, we used the Runge-Kutta method for the dynamic analysis of rotary compressor and the SOR (Successive OverRelaxation) method for the numerical analysis of Reynolds equation. The result shows that the operating condition of sub bearing is severer than that of main bearing, and eccentricity ratio grows as the bearing force increases. It is believed that the result can be applied to the design of alternative refrigerant rotary compressor.

전자석 바이어스 Diskless반경방향-축방향 일체형 자기 베어링 해석 (Analysis of an Electromagnet Biased Diskless Integrated Radial and Axial Magnetic Bearing)

  • 나언주
    • 한국소음진동공학회논문집
    • /
    • 제22권10호
    • /
    • pp.959-967
    • /
    • 2012
  • The theory for a new electromagnetically biased diskless combined radial and axial magnetic bearing is developed. A typical magnetic bearing system is composed of two radial magnetic bearings and an axial magnetic bearing. The axial magnetic bearing with a large axial disk usually limits rotor dynamic performance and makes assembling and disassembling difficult for maintenance work. This paper proposes a novel electromagnet biased integrated radial-axial magnetic bearing without axial disk. This integrated magnetic bearing uses two axial coils to provide the bias flux to the radial and axial air gaps of the combined bearing. The axial magnetic bearing unit in this combined magnetic bearing utilizes reluctance forces developed in the non-uniform air gaps such that the axial disk can be removed from the bearing unit. The 4-pole homopolar type radial magnetic bearing unit is also designed and analyzed. Three dimensional finite element model for the bearing is also developed and analyzed to illustrate the diskless combined magnetic bearing.

공기 스테이지의 형상 오차가 운동정밀도에 미치는 영향 (Effect of Shape Error of an Air Stage on Motion Precision)

  • 류대원;이재혁;박상신;김규하
    • Tribology and Lubricants
    • /
    • 제36권2호
    • /
    • pp.68-74
    • /
    • 2020
  • In this study, the effect of the shape error of a guideway on the movement of a stage that uses an air bearing is analyzed. The shape error of moving parts supported by the air bearing is known not to affect the vibrations of moving parts as much as the magnitude of the shape error. This is called the "averaging effect." In this study, the effect of shape error on a guideway, as well as the averaging effect of an air-bearing system, is analyzed theoretically using a dynamic-analysis program. The dynamic-analysis program applies a commercially available code in COMSOL and solves the Reynolds equation between the stage and the guideway, along with the equation of motion of the stage. The stage is modeled as a two-degree-of-freedom system. The shape error is applied to the film thickness function in the form of a sine wave. The stage movement is analyzed using the fast Fourier transform process. The eccentricity and tilting are found to be proportional to the amplitude of the shape error of the guideway. Stage vibrations are less than 10% of the amplitude of the shape error on the guideway. This means that the averaging effect of the air bearing is verified quantitatively. Moreover, if the air supply position matches the shape error in the guideway, there is a notable change in eccentricity and tilting.