• Title/Summary/Keyword: Air Bag

Search Result 243, Processing Time 0.021 seconds

Topographic Placement(Structure) and Macro Benthos Community in Winter for the Shellfish Farm of Namsung-ri, Goheung (고흥 남성리 패류양식장의 지형 구조와 저서생물 현장 조사)

  • Jo, Yeong-Hyun;Kim, Yun;Ryu, Cheong-Ro;Lee, Kyeong-Sig;Lee, In-Tae;Yoon, Han-Sam;Jun, Sue-Kyung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.2
    • /
    • pp.175-183
    • /
    • 2010
  • To understand the variation of macro benthos community according to the installation of structure and topographic placement in the shellfish farm on tidal flat, the practical example of the tidal shellfish growing area at Namsung-ri Goheung was observed. The results of the research for the field observation were summarized as follows. (1) The ground gradient of the shellfish farm was very flat below about $1^{\circ}$. The shellfish farm ground took the shape of $\sqcup$ from the shoreline to the place of 150 m seawards, and the shape of $\sqcap$ from there to the low tide line. During ebb tide, the $\sqcup$ shape ground stored the sea water, and the $\sqcap$ shape ground was supposed to act as the effect factor to leak slowly or to prevent the outflow. (2) The oyster shell bag or the type of riprap wall as the boundary in the shellfish farm was classified into five types. The air exposure time and flooding time were 181 and 434 minutes, respectively. (3) In the numerical experiment, the deep-sea water wave coming in the study area had 0.5 m of maximum wave height to show the very stable conditions and the wave direction pattern of S-direction was dominant at Naro great ridge, and SE, SSW and S-direction were distributed strongly around the shellfish farm. (4) By the grain size analysis, the sediment around tidal flat consisted of gravel 0.00~5.81(average 1.70)%, sand 14.15~18.39(average 13.23)%, silt 27.59~47.15(average 30.84)% and clay 35.79~55.73(average 36.19)%, and the sediment type was divided into (g)M(lightly gravelly mud), sM(sandy mud) and gM(gravelly mud) by Folk's diagram. (5) The macro benthos community survey conducted in this site in January, 2010 showed that 1 species of Mollusca, 8 species of Polychaeta and 2 species of Crustacea appeared, and 11 species occupying over 1% of total abundance were dominant.

Processing of Water Activity Controlled Fish Meat Paste by Dielectric Heating 2. Storage Stability of the Product (내부가열을 이용한 보장성어육(고등어) 연제품의 가공 및 제품개발에 관한 연구 2. 제품저장중의 품질변화)

  • LEE Kang-Ho;LEE Byeong-Ho;You Byeong-Jin;SUH Jae-Soo;JO Jin-Ho;JEONG In-Hak;JEA Yoi-Guan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.17 no.5
    • /
    • pp.361-367
    • /
    • 1984
  • In previous paper(Lee et al., 1984), preparation formula and processing conditions of the fish meat (mackerel) paste using dielectric heating were described, that included the proper shape and size of product and the conditions of dielectric heating, hot air dehydration, and heating with electric heater to yield the minimum expansion and case hardening during heating and to controll the final rater activity of 0.86 to 0.83 accompanying with a complete reduction of viable cells and good texture. In present study, changes in VBN, pH, total plate count, water activity, texture, the loss of available lysine, color indexes, TBA value, and the content of TI were determined to assess the quality stability and shelf-life of the product during the storage for 35 days at $5^{\circ}C\;and\;25^{\circ}C$, respectively. And the effect of vacuum sealing and hot water treatment before storage on the storage stability of product was also mentioned. As the product was vacuum packed in K-flex film bag, heat treated in boiling water for 6 minutes, and stored, water activity was maintained 0.86 to 0.84 for 35 days regardless of storage temperature, and the increase of total plate count was negligible in case of $5^{\circ}C$ storage while tended to gain slightly after 25 days at $25^{\circ}C$ storage. Changes in VBN was also minimum with an increase of 1.5 mg/100g at $5^{\circ}C$ and 7.0mg/100g at $25^{\circ}C$, but in case of unpacked sample, it was 24.5mg/100g at $5^{\circ}C$ and 42.4 mg/100g at $25^{\circ}C$ even after 7 days. In textural property hardness tended to increase after 28 days and folding test score was down to A or B from AA grade. The loss of available lysine was $7.5\%\;at\;5^{\circ}C$ and $17.0\%\;at\;25^{\circ}C$ but brown color was not deeply developed as the color index score indicated. TBA value was not increased at $5^{\circ}C$ while it tended to increase rapidly after 30 days at $25^{\circ}C$. Changes in TI content was not obvious except that it showed a tendency of increase at the end of storage as well as in the change of lysine and TBA value. It is concluded from the results that the quality of the product, pasteurized and water activity controlled by dielectric heating, and vacuum packed in K-flex film would be stable for more than 35 days at $5^{\circ}C$ and at least 25 days even at room temperature.

  • PDF

Preparation of Powdered Smoked-Dried Mackerel Soup and Its Taste Compounds (고등어분말수우프의 제조 및 정미성분에 관한 연구)

  • LEE Eung-Ho;OH Kwang-Soo;AHN Chang-Bum;CHUNG Bu-Gil;BAE You-Kyung;HA Jin-Hwan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.20 no.1
    • /
    • pp.41-51
    • /
    • 1987
  • This study was carried out to prepare powdered smoked-dried mackerel which can be used as a soup base, and to examine storage stability and the taste compounds of Products. Raw mackerel are filleted, toiled for 10 minutes and pressed to remove lipids, and then soaked in extract solution of skipjack meat. This soaked mackerel are smoked 3 times to $10-12\%$ moisture content at $80^{\circ}C$ for 8 hours. And the smoked-dried mackerel were pulverized to 50 mesh. Finally, the powdered smoked-dried mackerel were packed in a laminated film $bag(PET/Al\;foil/CPP:\;5{\mu}m/15{\mu}m/70{\mu}m,\;15\times17cm)$ with air(product C), nitrogen(product N) and oxygen absorber(product O), and then stored at room temperature for 100 days. The moisture and crude lipid content of powdered smoked-dried mackerel was $11.3-12.3\%,\;12\%$, respectively, and water activity is 0.52-0.56. And these values showed little changes during storage. The pH, VBN and amino nitrogen content increased slowly during storage. Hydrophilic and lipophilic brown pigment formation showed a tendency of increase in product(C) and showed little change in product(N) and (O). The TBA value, peroxide value and carbonyl value of product(N) and (O) were lower than those of product (C). The major fatty acids of products were 16:0, 18:1, 22:6, 18:0 and 20:5, and polyenoic acids decreased, while saturated and monoenoic acids increased during processing and storage of products. The IMP content in products were 420.2-454.2 mg/100 g and decreased slightly with storage period. And major non-volatile organic acids in products were lactic acid, succinic acid and $\alpha-ketoglutaric$ acid. In free amino acids and related compounds, major ones are histidine, alanine, hydroxyproline, lysine, glutamic acid and anserine, which occupied $80.8\%$ of total free amino acids. The taste compounds of powdered smoked-dried mackerel were free amino acids and related compounds (1,279.4 mg/100 g), non-volatile organic acids(948.1 mg/100 g), nucleotides and their related compounds (672.8 mg/100 g), total creatinine(430.4 ntg/100 g), tetaine(86.6 mg/100 g) and small amount of TMAO. The extraction condition of powdered smoked-dried mackerel in preparing soup stock is appropriate at $100^{\circ}C$ for 1 minute. Judging from the results of taste and sensory evaluation, it is concluded that the powdered smoked-dried mackerel can be used as natural flavoring substance in preparing soups and broth.

  • PDF