• 제목/요약/키워드: Air/fuel Ratio

Search Result 804, Processing Time 0.03 seconds

The effects of oxygen-concentration increased by oxygen-enriching membrane on combustion of S.I. engines (기체분리막에 의해 상승된 산소농도가 스파크점화기관의 연소에 미치는 영향)

  • 권병철;김형섭
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.74-80
    • /
    • 1992
  • The purpose of this study is to improve the performance of gasoline engine. Combustion-characteristics orignated from supplying cylinder with fuel-air mixture which was formed by the rise of oxygen-concentration in air with oxygen-enriching membrane have been investigated. The results showed that the poor-limit of oxygen-concentration was increased by shortening combustion-duration because the rise of oxygen-concentration in fuel-air mixture resulted in the promotion of combustion-velocity. Also, the generation of large output of power was expected from combustion in proportion as the amount of oxygen was increased.

  • PDF

A Study on Dependence of Smoke Emission in Diesel Engines Upon Diffusion Combustion (디젤기관의 스모크배출의 확산연소 의존성에 관한 연구)

  • 한성빈;문성수;이성열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.397-404
    • /
    • 1994
  • Smoke is emitted in diesel engines because fuel injected into the high-temperatured and high-pressured combustion chamber burns with its mixture with insufficient oxygeny. In consideration of air pollution, above all, it is necessary to illuminate the cause of smoke emission in diesel engines. The smoke emission, which is characteristic of diffusion combustion in diesel engines, results from pyrolysis of fuel not mixed with air. Therefore the smoke emission is dependent on diffusion combustion quantity, which is in turn controlled by engine parameter. The study aims at making clear and interpreting the interdependence of smoke emission in diesel engines with heat released within combustion chamber, camparing diffusion combustion quantity according to each engine parameter (air fuel ratio, injection timing, and engine speed), and showing the relation between smoke emission and fraction of diffusion combustion through experiment.

Combustion Efficiency of Boron Carbide Fuel Solid Fuel Ramjet

  • Lee, Tae-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.722-725
    • /
    • 2004
  • An experimental investigation was conducted to investigate the effects of the equivalence ratio and air mass flux on the combustion efficiency in a solid fuel ramjet used fuel grains which were highly loaded with boron carbide. Combustion efficiency increased with increasing equivalence ratio (grain length), and decreasing air mass flux. Higher inlet air temperature produced higher combustion efficiencies, apparently the result of enhanced combustion of the larger boron particles those bum in a diffusion controlled regime. Short grains which considered primarily of the recirculation region produced larger particles and lower combustion efficiencies. The result of the normalized combustion efficiency increased with inlet air temperature, is coincident with the result of the Brayton cycle thermal and the total efficiency relating to the heat input.

  • PDF

The Study on Knock Characteristics of Heavy Duty LPG Engine (대형 LPG 엔진의 노크 특성에 관한 연구)

  • 황승환;이정원;민경덕
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.107-113
    • /
    • 2002
  • LPG has been well known as a clean alternative fuel for vehicles. Recently, several LPG engines for heavy duty vehicles have been developed, which can replace some diesel engines that are one of the main sources for air pollution in the urban area. Because cylinder bore of heavy duty LPG engine is larger than that of gasoline, the study of knock characteristics of LPG engine are needed. In this study, the knock characteristics were investigated with various engine speed, air excess ratios and LPG fuel compositions. Experimental results indicated that the Knock occurrence probability decreases with increasing engine speed and propane fraction of fuel. The Knock occurrence probability is highest at excess air ratio of 1 and decreases as the mixture strength became leaner.

Numerical Investigation on Cavity-Enhanced-Supersonic Combustion Engine of Upstream Fuel Injection in Cavity (공동내부 연료분사방식 초음속 연소기의 수치해석 연구)

  • Jeong, Eun-Ju;Jeung, In-Seuck
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.35-39
    • /
    • 2003
  • A numerical study is carried out to investigate combustion phenomena in a model SCRamjet engine, which has been experimentally studied at the Australian National University using a T3 free-piston shock tunnel. The Mach number is 3.8, the static pressure 110kPa and the static temperature 1100K in the main air flow. The fuel is hydrogen, which is injected in the cavity. Equivalence ratio is set to either 0.25 or 0.5 to access its effect on the fuel-air mixing combustion phenomena. The results show that the cavity generates several recirculation zones, which increase the fuel-air mixing. Self ignition occurs near the point of fuel injection. The flame is anchored by the cavity and generates the precombustion shock on the step. For a high equivalence ratio, the recirculation zones are bigger and the flame is present throughout the combustor.

  • PDF

An electric conductive-probe technique for measuring the liquid fuel layer in the intake manifold

  • Kajitani, S.;Sawa, N.;Rhee, K.T.;Hayashi, S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1184-1189
    • /
    • 1990
  • In order to investigate liquid fuel filming over the intake manifold wall, an electrode-type probe has been developed by lines of authors and this probe was employed in a single cylinder two and four-stroke cycle engine and in a four cylinder four-stroke engine operated by neat methanol fuel. The performance of the probe was dependent upon several parameters including the liquid fuel layer thickness, temperature, additive in the fuel, and electric power source (i.e., AC and voltage level) and was independent of other variables such as direction of liquid flow with respect to the probe arrangement. Several new findings from this study may be in order. The flow velocity of the fuel layer in the intake manifold of engine was about (if the air velocity in the steady state operation, the layer thickness of liquid fuel varied in both the circumferential and longitydinal directions. In the transient operation of the engine, the temporal variation of fuel thickness was determined, which clearly suggests that there was difference between fuel/air ratio in the intake manifold and that in the cylinder. The variation was greatly affected by the engine speed, fuel/air ratio and throttle opening. And the variation was also very significant from cylinder to cylinder and it was particularly strong different engine speeds and throttle opening.

  • PDF

Determination of Air Fuel Ratio According to Fuel Composition (II) -Compensation of Unburned Gas Concentration in Eltinge Chart- (연료 조성에 따른 공연비 산정 (II) -Eltinge 차트에서 미연 성분의 보상-)

  • Ohm, In-Yong;Park, Chan-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.11
    • /
    • pp.1563-1571
    • /
    • 2003
  • This paper is the second part of several companion papers which compare the method of Air-fuel ratio(AFR) determination. In the previous paper, Eltinge chart was applied to the arbitrary fuel composition and the charts for gasoline, diesel, methanol, M85, liquefied petroleum gas(LPG), natural gas(NG), propane and butane were illustrated. In Eltinge chart, however, unburned hydrocarbon (UHC) is not used for determination of AFR. For improving accuracy, Eltinge suggested UHC compensation after the AFR reading in the chart. This compensation reduced the difference between real and reading value. In the compensation, however, the correction of oxygen and carbon dioxide is uncertain and there might be a mistake in conversion of UHC reading value. Therefore, the error is overestimated comparing with Spindt one which is most widely used. In addition, there is no comparison of the value with other useful methods. In this paper, the compensation of unburned HC was performed in Eltinge chart and the compensated value was compared with Spindts formula over wide range of AFR. The objects of investigating fuel are gasoline, methanol, NG and LPG. The result shows that Eltinge and Spindt method is flawlessly compatible and the difference between the two methods is under 0.3% in a λrange from 0.9 to 1.7. The method fur debugging instrumentation error is also presented.

An experimental study for combustion stability by operating conditions in a gasoline engine at idle (가솔린기관의 공회전에서 운전조건에 따른 연소안정성에 관한 실험적 연구)

  • Han, Sung-Bin;Kim, Sung-Mo
    • Journal of Energy Engineering
    • /
    • v.18 no.2
    • /
    • pp.136-140
    • /
    • 2009
  • Vehicle idle has become an increasing quality concern for automobile manufacturers because of its impact on customer satisfaction. As demand for better fuel economy increases, automobile manufacturers are continuously looking for any benefits from different driving conditions. Combustion variability in spark ignition engines was recognized that the stability of engine at idle is affected by the factors of fuel injection timing, ignition timing and air-fuel ratio. Therefore in this research, the results will be shown the effects of stability and the variations at idle according to fuel injection timing, ignition timing and air-fuel ratio as the basic parameters.

Performance Evaluation of Free breathing Fuel Cell by using Synthetic Jet Air Blower (Synthetic Jet Air Blower를 이용한 Free Breathing 연료전지의 성능 평가)

  • Choi, Jong-Pil;Ku, Bo-Sung;Jang, Jae-Hyuk;Seo, Young-Ho;Kim, Byeong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2834-2838
    • /
    • 2008
  • An free breathing proton exchange membrane fuel cell (PEMFC) was developed. This paper presents a study of the several effect on the performance of a fuel cell such as air flow rate, opening ratio, and cathode structures. Especially, an air flow rate is critical condition to improve the fuel cell performance. In this paper, we developed a synthetic jet micro air blower to supply high stoichiometric air. The synthetic jet actuation is usually generated by a traditional PZT-driven actuator, which consists of a small cylindrical cavity, orifices and PZT diaphragms. In comparison with free convection fuel cells, the forced-convection fuel cell which equipped synthetic jet micro air blower brings higher performance and stability for long term test. Also, power consumption of the synthetic jet micro air blower is under 0.3W. The results show that the maximum power density was $188mW/cm^2$ at $400mA/cm^2$. The maximum power density was higher 40% than power density of free convection fuel cell.

  • PDF

A Experimental Study on the Instability of Combustion in a Dump Combustor with Respect to Fuel and Air Mixing and Flow Conditions (혼합기 공급방식에 따른 덤프연소기의 연소 불안정성에 관한 실험적 연구)

  • Hong, Jung-Goo;Lee, Min-Chul;Lee, Uen-Do;Oh, Kwang-Chul;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.8 s.239
    • /
    • pp.963-970
    • /
    • 2005
  • The combustion instability of turbulent flames is the most important problem of the gas turbine combustor. Thus improved understanding of mechanisms of combustion instability is necessary for the design and operation of gas turbine combustors. In this study, the cause of the combustion instability in a rearward-step dump combustor was investigated with respect to the fuel flow modulation; choked fuel flow, unchoked fuel flow and fully premixed mixture flow. We observed various types of combustion instabilities with respect to the change of equivalence ratio, fuel flow conditions and fuel injection location. Particularly in the unchoked fuel flow condition, it was found that the oscillation time of combustion instability is strongly related to the convection time of the fuel and that the pressure fluctuation in a lab-scale combustor is highly related to the vortex and the equivalence ratio fluctuations due to fuel flow modulation and unmixedness of the fuel and air.