• 제목/요약/키워드: Air/fuel Ratio

검색결과 804건 처리시간 0.029초

정상초음파가 인가된 탄화수소계 연료/공기 혼합물의 당량비에 따른 연소특성 (Combustion Characteristics According to the Equivalence Ratio of Hydrocarbon Fuel/Air Premixture Excited by Ultrasonic Standing Wave)

  • 김민철;배성훈;홍준열;김정수
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.628-631
    • /
    • 2017
  • 정상초음파가 인가된 탄화수소계 연료별/공기 혼합물의 당량비에 따른 연소특성 비교를 실험적 연구 결과로 제시한다. 전파화염의 이미지는 고속카메라를 이용하여 획득하였으며, 이미지 후처리를 통해 연료별 연소특성을 면밀히 관찰하였다. 정상초음파를 인가하면 탄화수소계 연료/공기 예혼합기의 이론당량비조건에서 연소반응을 촉진시킨다는 점을 확인하였다.

  • PDF

고효율 순산소 버너의 연소 특성에 관한 실험적 연구 (Experimental study on combustion characteristics of high efficiency oxy-fuel burner)

  • 김세원;안재현;김민수
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제25회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.57-64
    • /
    • 2002
  • This paper describes the results of a series of experiments executed by using two pilot-scale oxv-fuel burners are designed for maximum capacity of 50,000 kacl/hr, 300,000 kcal/hr and installed in the test furnace. The effects of turn-down ratio, excess oxygen ratio, nozzle exit velocity, injection angle, swirl vane angle and inlet oxygen temperature on the combustion characteristic are investigated. Temperature distributions are measured using R-type and Molybdenum sheathed C-type thermocouple. The results showed that maximum temperature and mean temperature increase with the increase of turn-down ratio and inlet oxygen temperature. The maximum flame temperature was increased about 35% compared to the case of equivalent air operated condition. In addition, Optimum excess oxygen ratio and nozzle characteristics are obtained for this oxy-fuel glass melting furnace.

  • PDF

Measurement of suction air amount at reciprocating engine under stationary and transient operation

  • Kubota, Yuzuru;Hayashi, Shigenobu;Kajitani, Shuichi;Sawa, Norihiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.1037-1042
    • /
    • 1990
  • The air-fuel ratio of an internal combustion engine must be controlled with accuracy for the improvements of exhaust emission and fuel consumption. Therefore, it is necessary to measure the exact instantaneous amounts of fuel and suction air, so we carried out the experiments for measuring the air flow velocity in a suction pipe of an internal combustion engine using three types of instantaneous air flowmeter. The results obtained can be summarized as follows: (1) The laminar-flow type flowmeter is able to measure both the average and the instantaneous flow rate, but it is necessary to rectify the pulsating air flow in the suction pipe. (2) The a spark-discharge type flow velocity meter is able to measure the instantaneous air velocity, but it is necessary to choose the suitable electrode form and the spark character. (3) The tandem-type hot-wire flow velocity meter indicates the instantaneous flow velocity and its flow direction.

  • PDF

실험실규모 순환유동층에서 RDF와 RPF의 연소 특성에 관한 연구 (Combustion of RDF and RPF in a Lab-Scale Circulating Fluidized Bed)

  • 이재성;이응록;안민하;박상욱;신동훈;황정호
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제28회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.173-179
    • /
    • 2004
  • Combustion of refuse derived fuel(RDF) and refuse plastic fuel (RPF) was carried out in a lab-scale circulating fluidized bed. Experiment was investigated cold flow visualization. RDF was made by C & tech and RPF was made by KRS. The results include distribution of temperature in the combustion chamber, and concentrations of flue gas such as $O_2$, $CO_2$, CO, $NO_x$ and HCs Micro G.C(gas chromatograph) was employed to find out concentration of He Temperature distribution was different when RDF and RPF were burnt respectably. As air ratio became increased, $CO_2$, CO, and total of HCs emissions were decreased. According to the number of carbon atom of HCs, HC were classified as five kinds of HC.

  • PDF

모델에 의한 흡배관내 연료유동의 거동에 관한 실험염구 (An experimental study on the behavior of fuel flow in intake manifold by the model)

  • 박경석
    • 오토저널
    • /
    • 제5권3호
    • /
    • pp.33-44
    • /
    • 1983
  • This paper deals with the experimental study on the behavior of fuel (methanol) in intake manifold by using the basic apparatus which is manufactured the visible straight tube type model. In this study, the new device for liquid film thickness measurement and vaporization rate measurement are introduced to investigate the variation of liquid film thickness along the intake manifold and to observe the effect of vaporization of injected fuel. the results are summarized as follows: 1) The vaporization rate increases in proportion to decreasing of throttle valve angle and growing air fuel ratio. 2) The liquid film thickness along the intake manifold is mostly independent for the throttle valve angle in low air velocity and then affected in high air velocity, but the distribution of the liquid film thickness on circumferential position almost constant in the region of 300mm down stream from carburetor. 3) The mean liquid film thickness is 0.04 - 0.18mm in case of methanol in the region of air velocity Va = 12m/s - 55m/s and decreases with decreasing the throttle valve angle.

  • PDF

직접분사식 가솔린엔진에서 운전조건에 따른 바이오에탄올의 연소 및 배기배출물 특성 (Effect of Engine Operating Conditions on Combustion and Exhaust Emission Characteristics of a Gasoline Direct Injection(GDI) Engine Fueled with Bio-ethanol)

  • 윤승현;박수한
    • 대한기계학회논문집B
    • /
    • 제39권7호
    • /
    • pp.609-615
    • /
    • 2015
  • 본 연구는 직접분사식 가솔린엔진에서 공기 과잉률 및 바이오에탄올-가솔린 혼합연료의 혼합비에 따른 연소특성과 배기배출물 특성을 실험적으로 규명한 것이다. 다양한 공기 과잉률 및 혼합비 조건에서 실험을 수행하였으며, 연소실 압력, 열발생률, 연료소비율 등을 통해 연소특성을 분석하였으며, 배기배출물 특성은 미연탄화수소(HC), 일산화탄소(CO), 질소산화물($NO_x$) 분석을 통해 확인하였다. 혼합연료의 실험결과는 100% 가솔린 및 바이오에탄올 실험결과와 비교하였다. 실험결과 최고연소압력과 열발생률, 제동연료소비율은 혼합비의 증가에 따라 증가하였으며, CO, HC, $NO_x$와 같은 배기배출물은 바이오 에탄올 혼합비율이 증가함에 따라 감소하였다. 혼합연료의 배기배출물 수준은 가솔린 보다 낮게 나타났다.

UV Laser Raman Scattering을 이용한 정적 연소기내 분사된 연료의 정량적 당량비 측정에 관한 연구 (A Study on Quantitative Measurements of Equivalence Ratio in Constant Volume Chamber Using UV Laser Raman Scattering)

  • 진성호;허형석;김경수;박경석
    • 한국분무공학회지
    • /
    • 제3권4호
    • /
    • pp.35-42
    • /
    • 1998
  • Laser Raman scattering method has been applied to measure equivalence ratio of methane/air and propane/air mixture in constant volume combustion chamber. We used high power KrF excimer laser$(\lambda=248nm)$ and a high gain ICCD camera to capture low intensity Raman signal. Raman shifts and Ram cross-sections of $H_2,\;O_2,\;N_2,\;CO_2,\;CH_4\;and\;C_3H_8$ were measured precisely. Our results showed an excellent agreement with other groups. Mole fraction measurement of $O_2\;and\;N_2$ from air showed that $O_2\;:\;N_2$ = 0.206 : 0.794. We used constant volume combustion chamber and gas injector which is operated at $5\sim10barg$. Methane and propane are used as a fuel. 50 Raman signal are obtained and ensemble averaged for measurement of equivalence ratio. Our measured results showed that the equivalence ratio of fuel/air mixture is reasonable at ${\pm}5%$ error range.

  • PDF

스파크 플러그를 이용한 혼합기 농도 측정 (Measurements of Mixture Strength Using Spark Plug)

  • 조상현;임명택
    • 한국자동차공학회논문집
    • /
    • 제8권4호
    • /
    • pp.18-25
    • /
    • 2000
  • Ion current in an S.I engine cylinder is measured with the spark plug as a probe. The peak values are confirmed to show a fair correlation with local air-fuel ration and engine speed which implies that the ion current measured at the spark plug may provide a signal for the local mixture strength which is the key parameter in precise fuel control for future engines especially of gasoline direct-injected lean burn engines.

  • PDF

분사시기의 변화에 따른 제어자발화 가솔린기관의 성능 및 배기특성 (Performance and Emission Characteristics of a Controlled Auto-Ignition Gasoline Engine according to Variation of the Injection Timing)

  • 김홍성
    • 동력기계공학회지
    • /
    • 제9권1호
    • /
    • pp.14-22
    • /
    • 2005
  • This work deals with a controlled auto-ignition (CAI) single cylinder gasoline engine, focusing on the extension of operating conditions. The fuel is injected indirectly into electrically heated inlet air flow. In order to keep a homogeneous air-fuel mixing, the fuel injector is water-cooled by a specially designed coolant passage. Investigated are the engine performance and emission characteristics under the wide range of operating conditions such as 40 in the air-fuel ratio, 1000 to 1800 rpm in the engine speed, $150\;to\;180^{\circ}C$ in the inlet-air temperature, and $80^{\circ}$ BTDC to $20^{\circ}$ ATDC in the injection timing. A controlled auto-ignition gasoline engine can be achieved that the ultra lean-burn with self-ignition of gasoline fuel by heating inlet air. It can be achieved that the emission concentrations of carbon monoxide, hydrocarbons and nitrogen oxide had been significantly reduced by CAI combustion compared with conventional spark ignition engine.

  • PDF

직분식 예혼합 압축착화 디젤엔진의 운전조건과 연료조성에 따른 연소 및 배기 특성 (The Characteristics of Combustion and Exhaust Emission according to Operating Condition and Fuel Composition in a Direct Injection Type HCCI Diesel Engine)

  • 이기형;류재덕;이창식
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.10-16
    • /
    • 2004
  • The Homogeneous Charge Compression Ignition (HCCI) engine has advantage for reducing the NOx and P.M. simultaneously. Therefore, HCCI engine is receiving attention as a low emission diesel engine concept. This study was carried out to investigate the characteristics of combustion and exhaust emission for operating conditions in a direct injection type of HCCI engines such as supercharged and naturally aspirated using diesel fuel and additive. From the experimental result, we found that cool flame was always appeared and also it was difficult to control combustion characteristics by changing the injection timing in HCCI. In addition, at the lean air-fuel ratio and high speed range, it was observed that charging air pressure, additive or increasing intake air temperature is effective to increase combustion performance and reduce exhaust emission. We concluded that chemical reaction by the increasing intake air temperature or additive without physical improvement has limitation for reduction of exhaust emission.