• Title/Summary/Keyword: Air/Ground Temperatures

Search Result 76, Processing Time 0.029 seconds

Comparison of Differences on Microclimatic Factors and Human Thermal Sensation between in situ Measurement and Computer Modeling (실측과 컴퓨터 모델링을 통한 미기후 요소 및 인간 열환경지수의 차이 비교 분석)

  • Park, Sookuk;Kong, Hak-Yang;Kang, Hoon
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.1
    • /
    • pp.43-52
    • /
    • 2020
  • For investigating restriction in the use of computer modeling results without adjusting them with measured data, this study analyzed and compared microclimatic aspects and human thermal sensation between in situ measurement and computer modeling using ENVI-met in and around a small urban park of downtown Changwon in May, 2012. In the results, ENVI-met underestimated air temperatures and wind speeds than the measured ones and overestimated relative humidities. In the radiation analysis, ENVI-met overestimated solar radiation from the sky hemisphere and terrestrial radiation from the ground hemisphere and underestimated terrestrial radiation from the sky hemisphere. Also, the differences of mean radiant temperatures with the measured ones reached up to 19.6℃ which could create an 1.2 PMV difference. ENVI-met overestimated up to 2.3 PMV and 4℃ UTCI at 12:00. The difference was shown clearly in PMV than in UTCI. Therefore, when computer modeling is used in urban microclimate and human thermal sensation (comfort) studies the modeling results should be compared with measured data and adjusted adequately to adopt the results to urban and landscape planning and design.

Improvement of Cooling Efficiency in Greenhouse Fog System Using the Dehumidifier (제습기를 이용한 온실 포그냉방시스템의 효율향상)

  • Nam Sang Woon;Kim Kee Sung;Giacomelli Gene A.
    • Journal of Bio-Environment Control
    • /
    • v.14 no.1
    • /
    • pp.29-37
    • /
    • 2005
  • In order to provide fundamental data on utilization of dehumidifier in greenhouses, a condensing type dehumidifier using ground water as a coolant was developed and tested dehumidification performance. The developed dehumidifier was applied to greenhouse with fog cooling system and effect of dehumidification on improvement of evaporative cooling efficiency was analyzed. Results of the dehumidifier performance test showed that dehumidification using ground water as a coolant was sufficiently possible in fog cooling greenhouse. When the set point temperature of greenhouse cooling was $32^{\circ}C$ and as temperatures of ground water rose from $15^{\circ}C\;to\;18^{\circ}C,\;21^{\circ}C\;and\;24^{\circ}C$, dehumidification rates decreased by $17.7\%,\;35.4\%\;and\;52.8\%$, respectively. As flow rates of ground water reduced to $75\%\;and\;50\%$, dehumidification rates decreased by $12.1\%\;and\;30.5\%$, respectively. Cooling efficiency of greenhouse equipped with fog system was distinctly improved by artificial dehumidification. When the ventilation rate was 0.7 air exchanges per minute, dehumidification rates of the fog cooling greenhouse caused by natural ventilation were 53.9%-74.4% and they rose up to 75.4%-95.9% by operating the dehumidifier. In case of using the ground water of $18^{\circ}C$ and flow rate of design condition, it was analyzed that whole fog spraying water can be dehumidified even if the ventilation rate is 0.36 exchanges per minute. As a utilization of dehumidifier, it is possible to improve cooling efficiency of fog system in naturally ventilated greenhouses.

Tropical Night (Nocturnal Thermal High) in the Mountainous Coastal City

  • Choi, Hyo
    • Journal of Environmental Science International
    • /
    • v.13 no.11
    • /
    • pp.965-985
    • /
    • 2004
  • The investigation of driving mechanism for the formation of tropical night in the coastal region, defined as persistent high air temperature over than 25$^{\circ}C$ at night was carried out from August 14 through 15, 1995. Convective boundary layer (CBL) of a 1 km depth with big turbulent vertical diffusion coefficients is developed over the ground surface of the inland basin in the west of the mountain and near the top of the mountain, while a depth of thermal internal boundary layer (TIBL) like CBL shrunken by relatively cool sea breeze starting at 100 km off the eastern sea is less than 150 m from the coast along the eastern slope of the mountain. The TIBL extends up to the height of 1500 m parallel to upslope wind combined with valley wind and easterly sea breeze from the sea. As sensible heat flux convergences between the surface and lower atmosphere both at the top of mountain and the inland coast are much greater than on the coastal sea, sensible heat flux should be accumulated inside both the TIBL and the CBL near the mountain top and then, accumulated sensible heat flux under the influence of sea breeze circulation combined with easterly sea breeze from sea to inland and uplifted valley wind from inland to the mountain top returning down toward the eastern coastal sea surface should be transported into the coast, resulting in high air temperatures near the coastal inland. Under nighttime cooling of ground surface after sunset, mountain wind causes the daytime existed westerly wind to be an intensified westerly downslope wind and land breeze further induces it to be strong offshore wind. No sensible heat flux divergence or very small flux divergence occurs in the coast, but the flux divergences are much greater on the top of the mountain and along its eastern slope than on the coastal inland and sea surfaces. Thus, less cooling down of the coastal surface than the mountain surface and sensible heat transfer from warm pool over the coast into the coastal surface produce nocturnal high air temperature on the coastal inland surfaces, which is not much changed from daytime ones, resulting in the persistence of tropical night (nocturnal thermal high) until the early in the morning.

Comparisons of Collection 5 and 6 Aqua MODIS07_L2 air and Dew Temperature Products with Ground-Based Observation Dataset (Collection 5와 Collection 6 Aqua MODIS07_L2 기온과 이슬점온도 산출물간의 비교 및 지상 관측 자료와의 비교)

  • Jang, Keunchang;Kang, Sinkyu;Hong, Suk Young
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.5
    • /
    • pp.571-586
    • /
    • 2014
  • Moderate Resolution Imaging Spectroradiometer (MODIS) provides air temperature (Tair) and dew point temperature (Tdew) profiles at a spatial resolution of 5 km. New Collection 6 (C006) MODIS07_L2 atmospheric profile product has been produced since 2012. The Collection 6 algorithm has several modifications from the previous Collection 5 (C005) algorithm. This study evaluated reliabilities of two alternative datasets of surface-level Tair and Tdew derived from C005 and C006 Aqua MODIS07_L2 (MYD07_L2) products using ground measured temperatures from 77 National Weather Stations (NWS). Saturated and actual vapor pressures were calculated using MYD07_L2 Tair and Tdew. The C006 Tair showed lower mean error (ME, -0.76 K) and root mean square error (RMSE, 3.34 K) than the C005 Tair (ME = -1.89 K, RMSE = 4.06 K). In contrasts, ME and RMSE of C006 Tdew were higher than those (ME = -0.39 K, RMSE = 5.65 K) of C005 product. Application of ambient lapse rate for Tair showed appreciable improvements of estimation accuracy for both of C005 and C006, though this modification slightly increased errors in C006 Tdew. The C006 products provided better estimation of vapor pressure datasets than the C005-derived vapor pressure. Our results indicate that, except for Tdew, C006 MYD07_L2 product showed better reliability for the region of South Korea than the C005 products.

Estimation of Temporal Surface Air Temperature under Nocturnal Inversion Conditions (야간 역전조건 하의 지표기온 경시변화 추정)

  • Kim, Soo-ock
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.3
    • /
    • pp.75-85
    • /
    • 2017
  • A method to estimate hourly temperature profiles on calm and clear nights was developed based on temporal changes of inversion height and strength. A meteorological temperature profiler (Model MTP5H, Kipp and Zonen) was installed on the rooftop of the Highland Agriculture Research Institute, located in Daegwallyeong-myeon, Pyeongchang-gun, Gangwon-do. The hourly vertical distribution of air temperature was measured up to 600 m at intervals of 50 m from May 2007 to March 2008. Temperature and relative humidity data loggers (HOBO U23 Pro v2, Onset Computer Corporation, USA) were installed in the Jungdae-ri Valley, located between Gurye-gun, Jeollanam-do and Gwangyang-si, Jeollanam-do. These loggers were used to archive measurements of weather data 1.5 m above the surface from October 3, 2014, to November 23, 2015. The inversion strength was determined using the difference between the temperature at the inversion height, which is the highest temperature in the profile, and the temperature at 100 m from the surface. Empirical equations for the changes of inversion height and strength were derived to express the development of temperature inversion on calm and clear nights. To estimate air temperature near the ground on a slope exposed to crops, the equation's parameters were modified using temperature distribution of the mountain slope obtained from the data loggers. Estimated hourly temperatures using the method were compared with observed temperatures at 19 weather sites located within three watersheds in the southern Jiri-mountain in 2015. The mean error (ME) and root mean square error (RMSE) of the hourly temperatures were $-0.69^{\circ}C$ and $1.61^{\circ}C$, respectively. Hourly temperatures were often underestimated from 2000 to 0100 LST the next day. When temperatures were estimated at 0600 LST using the existing model, ME and RMSE were $-0.86^{\circ}C$ and $1.72^{\circ}C$, respectively. The method proposed in this study resulted in a smaller error, e.g., ME of $-0.12^{\circ}C$ and RMSE of $1.34^{\circ}C$. The method could be improved further taking into account various weather conditions, which could reduce the estimation error.

On the Warming Effects due to Artificial Constructions in a Large Housing Complex (대규모 주택단지내의 인공구조물에 의한 승온화효과에 관한 연구)

  • 김해동;이송옥;구현숙
    • Journal of Environmental Science International
    • /
    • v.12 no.7
    • /
    • pp.705-713
    • /
    • 2003
  • In mid-August 2002, under clear summer pressure patterns, we carried out an intensive meteorological observation to examine the warming effects due to artificial constructions in a large housing complex. We set an automatic weather system(AWS) at two places in a bare soil surface within a limited development district and an asphalt surface within a large apartment residence area, respectively. As a result of observation, it became clear that the difference of the surface air(ground) temperature between the bare soil surface and its peripheral asphalt area reached about 4$^{\circ}C$(13$^{\circ}C$) at the maximum from diurnal variation of surface temperatures on AWS data. Through the heat balance analysis using measurement data, it became clear that the thermal conditions at two places are dependent on the properties of surface material. The latent heat flux over the bare soil surface reached to about 300 W/㎡, which is more than a half of net radiation during the daytime. On the other hand, it was nearly zero over the asphalt surface. Hence, the sensible heat flux over the asphalt surface was far more than that of the bare soil surface. The sensible heat flux over the asphalt surface showed about 20∼30 W/㎡ during the night. It was released from asphalt surface which have far more heat capacity than that of bare soil surface.

A Study of Modular Architecture's Design to Dwelling Environment in Antarctica (극한지 모듈러 건축물의 설계, 시공 및 거주환경에 대한 연구)

  • Lee, Won-Hak;Song, Young-Hak;Lim, Seok-Ho
    • Journal of the Korean housing association
    • /
    • v.25 no.2
    • /
    • pp.11-18
    • /
    • 2014
  • This study looked at designing, building and operating temporary camp, the first structures that South Korea built in the Antarctica. While there may be differences in accordance with the topography, ground surfaces in the Antarctica are covered broken stones, glaciers and snow. Hence, such topographical characteristics should be taken into account when conducting any construction work. To ensure successful assembly construction in the Antarctica using modules, prior trial assembly work should be done in Korea to identify any possible trouble in the actual construction process. Assuming that the workers will have to spend at least one winter in the temporary camp, the work will be more severely affected by adverse weather conditions and snow drift, resulting in the need to clear snow. This can be by designing roofs with curved surfaces. Also, quantitative effects will need to be verified through simulation and actual measurement. It will also be necessary to assess the camp's thermal environment and examine its air-conditioning methods. To identify the temporary camp's thermal system, the temperatures and humidities were measured, and the heating system was designed not to offer automatic control or desired value selection functions.

THERMOSPHERIC NEUTRAL WINDS WITHIN THE POLAR CAP IN RELATION TO SOLAR ACTIVITY

  • Won, Young-In;Killeen, T.L.;Niciejewski, R.J.
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.23 no.1
    • /
    • pp.1-11
    • /
    • 1995
  • Thermospheric neutral winds and temperatures have been collected from the ground-based Fabry-Perot interferometer (FPI) at Thule Air Base ($76.5^{\circ}N{\;}69.0^{\circ}W$), Greenland since 1985. The thermospheric observations are obtained by determining the Doppler characteristics f the [OI] 6300 ${\AA}$ emissions of atomic oxygen. The FPI operates routinely during the winter season, with a limitation in the observation by the existence of clouds. For this study, data acquired from 1985 to 1991 were analyzed. The neutral wind measurements from these long-term measurements are used to investigate the influence of solar cycle variation on the high-latitude thermospheric dynamics. These data provide experimental results of the geomagnetic polar cap are also compared with the predictions of two semiempirical models : the vector spherical harmonics (VSH) model of Killeen et al. (1987) and the horizontal wind model (HWM) of Hedin et al. (1991). The experimental results show a good positive correlation between solar activity and thermospheric wind speed over the geomagnetic polar cap. The calculated correlation coefficient indicates that an increase of 100 in F10.7 index corresponds to an increase in wind speed of about 100 m/s. The model predictions reveal similar trends of wind speed variation as a function of solar activity, with the VSH and HWM models tending to overestimate and underestimate the wind speed, respectively.

  • PDF

An Analytical Study on the Optimal Set-point of the Hybrid Plant (복합열원설비 운전온도 최적 설정에 관한 해석적 연구)

  • Jeon, Jong-Ug;Lee, Sun-Il;Lee, Tae-Won;Kim, Yong-Ki;Hong, Dae-Hie;Kim, Yong-Chan
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.352-357
    • /
    • 2007
  • The objective of this study is to find the optimal set-point of a hybrid Plant, which is combined by renewable energy plant of the GSHP(Ground Source Heat Pump) and the conventional plant(chiller, boiler). The work presented in this study was carried out by using the EnergyPlus(Version 2.0). In order to validate the simulation model, field data were measured from a building. The GSHP was used as a base plant and the conventional plant as the assistant plant. Various temperatures were controlled (zone summer set-point, zone winter set-point, chilled water temperature, hot water temperature) to find the optimal set-point temperature of the system. The influence of the various set-points were analyzed seasonally.

  • PDF

Water Temperature and Salinity Variation Analysis in the Inter-Tidal Zone, South of Ganghwado, Korea (강화도 남단 조간대에서의 수온 및 염분 변동양상 분석)

  • Cho, Hong-Yeon;Koo, Bon-Joo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.3
    • /
    • pp.310-320
    • /
    • 2008
  • Water temperature and salinity variation patterns were analysed using the CTD data measured in the Yeochari, Dongmakri and Donggeomdo intertidal zone, south of Ganghwado. Only the data during the submersion period of the measurement stations were used in this analysis. It is clearly shown that the correlation between air and water temperatures is very low and the water temperature variation shows clearly the opposite patterns as the tidal elevation increases and decreases. Whereas, the salinity change shows the similar pattern of the tidal elevation change pattern because the salinity change pattern could be described as the increasing function from the shoreline to offshore regions due to the continuous ground-water inflow in the adjacent watersheds. The salinity is increased from the submersion time to the high tide and decreased from the high tide to the exposure time.