• Title/Summary/Keyword: Ai

Search Result 7,513, Processing Time 0.037 seconds

Analysis on Filter Bubble reinforcement of SNS recommendation algorithm identified in the Russia-Ukraine war (러시아-우크라이나 전쟁에서 파악된 SNS 추천알고리즘의 필터버블 강화현상 분석)

  • CHUN, Sang-Hun;CHOI, Seo-Yeon;SHIN, Seong-Joong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.25-30
    • /
    • 2022
  • This study is a study on the filter bubble reinforcement phenomenon of SNS recommendation algorithm such as YouTube, which is a characteristic of the Russian-Ukraine war (2022), and the victory or defeat factors of the hybrid war. This war is identified as a hybrid war, and the use of New Media based on the SNS recommendation algorithm is emerging as a factor that determines the outcome of the war beyond political leverage. For this reason, the filter bubble phenomenon goes beyond the dictionary meaning of confirmation bias that limits information exposed to viewers. A YouTube video of Ukrainian President Zelensky encouraging protests in Kyiv garnered 7.02 million views, but Putin's speech only 800,000, which is a evidence that his speech was not exposed to the recommendation algorithm. The war of these SNS recommendation algorithms tends to develop into an algorithm war between the US (YouTube, Twitter, Facebook) and China (TikTok) big tech companies. Influenced by US companies, Ukraine is now able to receive international support, and in Russia, under the influence of Chinese companies, Putin's approval rating is over 80%, resulting in conflicting results. Since this algorithmic empowerment is based on the confirmation bias of public opinion by 'filter bubble', the justification that a new guideline setting for this distortion phenomenon should be presented shortly is drawing attention through this Russia-Ukraine war.

A Spatial Analysis of Seismic Vulnerability of Buildings Using Statistical and Machine Learning Techniques Comparative Analysis (통계분석 기법과 머신러닝 기법의 비교분석을 통한 건물의 지진취약도 공간분석)

  • Seong H. Kim;Sang-Bin Kim;Dae-Hyeon Kim
    • Journal of Industrial Convergence
    • /
    • v.21 no.1
    • /
    • pp.159-165
    • /
    • 2023
  • While the frequency of seismic occurrence has been increasing recently, the domestic seismic response system is weak, the objective of this research is to compare and analyze the seismic vulnerability of buildings using statistical analysis and machine learning techniques. As the result of using statistical technique, the prediction accuracy of the developed model through the optimal scaling method showed about 87%. As the result of using machine learning technique, because the accuracy of Random Forest method is 94% in case of Train Set, 76.7% in case of Test Set, which is the highest accuracy among the 4 analyzed methods, Random Forest method was finally chosen. Therefore, Random Forest method was derived as the final machine learning technique. Accordingly, the statistical analysis technique showed higher accuracy of about 87%, whereas the machine learning technique showed the accuracy of about 76.7%. As the final result, among the 22,296 analyzed building data, the seismic vulnerabilities of 1,627(0.1%) buildings are expected as more dangerous when the statistical analysis technique is used, 10,146(49%) buildings showed the same rate, and the remaining 10,523(50%) buildings are expected as more dangerous when the machine learning technique is used. As the comparison of the results of using advanced machine learning techniques in addition to the existing statistical analysis techniques, in spatial analysis decisions, it is hoped that this research results help to prepare more reliable seismic countermeasures.

A Study on Consumer Type Data Analysis Methodology - Focusing on www.ethno-mining.com data - (소비자유형 데이터 분석방법론 연구 - www.ethno-mining.com 데이터를 중심으로 -)

  • Wookwhan, Jung;Jinho, Ahn;Joseph, Na
    • Journal of Service Research and Studies
    • /
    • v.12 no.2
    • /
    • pp.80-93
    • /
    • 2022
  • This study is a study on a methodology that can extract various factors that affect purchase and use of products/services from the consumer's point of view through previous studies, and analyze the types and tendencies of consumers according to age and gender. To this end, we quantify factors in terms of general personal propensity, consumption influence, consumption decision, etc. to check the consistency of data, and based on these studies, we conduct research to suggest and prove data analysis methodologies of consumer types that are meaningful from the perspectives of startups and SMEs. did As a result, it was confirmed through cross-validation that there is a correlation between the three main factors assumed for data analysis from the consumer's point of view, the general tendency, the general consumption tendency, and the factors influencing the consumption decision. verified. This study presented a data analysis methodology and a framework for consumer data analysis from the consumer's point of view. In the current data analysis trend, where digital infrastructure develops exponentially and seeks ways to project individual preferences, this data analysis perspective can be a valid insight.

Prototype Fabrication and Performance Evaluation of Metal-oxide Nanoparticle Sensor for Detecting of Hazardous and Noxious Substances Diluted in Sea Water (해수 중 유해위험물질 검출을 위한 금속산화물 나노 입자 센서의 시작품 제작 및 성능 평가)

  • Sangsu An;Changhan Lee;Jaeha Noh;Youngji Cho;Jiho Chang;Sangtae Lee;Yongmyung Kim;Moonjin Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.spc
    • /
    • pp.23-29
    • /
    • 2022
  • To detect harmful chemical substances in seawater, we fabricated a prototype sensor and evaluated its performance. The prototype sensor consisted of a detector, housing, and driving circuit. We built the detector by printing an Indium-Tin-Oxide (ITO) nanoparticle film on a flexible substrate, and it had two detection parts for simultaneous detection of temperature and HNS concentration. The housing connected the detector and the driving circuit and was made of Teflon material to prevent chemical reactions that may affect sensor performance. The driving circuit supplied electric power, and display measured data using a bridge circuit and an Arduino board. We evaluated the sensor performances such as response (ΔR), the limit of detection (LOD), response time, and errors to confirm the specification.

A Study on Cyber Security Management Awareness of Vessel Traffic Service Personnel Using IPA (IPA분석을 활용한 해상교통관제 인원의 사이버 보안 관리 인식 연구)

  • Sangwon Park;Min-Ji Jeong;Yunja Yoo;Kyoung-Kuk Yoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1140-1147
    • /
    • 2022
  • With the development of digital technology, the marine environment is expected to change rapidly. In the case of autonomous vessels, technology is being developed in many countries, and the international community has begun to discuss ways to operate it. Changes in ships cause changes in the marine traffic environment and urge changes to aids to navigation. This study aims to analyze the cyber security management awareness of VTS personnel to improve the cyber security system for aids to navigation. To this end, the current status of cyber security management was reviewed with a focus on VTS, and a survey was conducted on VTS personnel. The survey analysis used the IPA methodology, and as a result of the analysis, a clear difference was observed in the perception of cybersecurity between those with experience in security and those without experience. In addition, technical measures related to cyber-attack detection and blocking should be implemented with the highest priority. The results of this study can be used as basic data for improving the cyber security management system for aids to navigation.

Guidelines for big data projects in artificial intelligence mathematics education (인공지능 수학 교육을 위한 빅데이터 프로젝트 과제 가이드라인)

  • Lee, Junghwa;Han, Chaereen;Lim, Woong
    • The Mathematical Education
    • /
    • v.62 no.2
    • /
    • pp.289-302
    • /
    • 2023
  • In today's digital information society, student knowledge and skills to analyze big data and make informed decisions have become an important goal of school mathematics. Integrating big data statistical projects with digital technologies in high school <Artificial Intelligence> mathematics courses has the potential to provide students with a learning experience of high impact that can develop these essential skills. This paper proposes a set of guidelines for designing effective big data statistical project-based tasks and evaluates the tasks in the artificial intelligence mathematics textbook against these criteria. The proposed guidelines recommend that projects should: (1) align knowledge and skills with the national school mathematics curriculum; (2) use preprocessed massive datasets; (3) employ data scientists' problem-solving methods; (4) encourage decision-making; (5) leverage technological tools; and (6) promote collaborative learning. The findings indicate that few textbooks fully align with these guidelines, with most failing to incorporate elements corresponding to Guideline 2 in their project tasks. In addition, most tasks in the textbooks overlook or omit data preprocessing, either by using smaller datasets or by using big data without any form of preprocessing. This can potentially result in misconceptions among students regarding the nature of big data. Furthermore, this paper discusses the relevant mathematical knowledge and skills necessary for artificial intelligence, as well as the potential benefits and pedagogical considerations associated with integrating technology into big data tasks. This research sheds light on teaching mathematical concepts with machine learning algorithms and the effective use of technology tools in big data education.

Textile material classification in clothing images using deep learning (딥러닝을 이용한 의류 이미지의 텍스타일 소재 분류)

  • So Young Lee;Hye Seon Jeong;Yoon Sung Choi;Choong Kwon Lee
    • Smart Media Journal
    • /
    • v.12 no.7
    • /
    • pp.43-51
    • /
    • 2023
  • As online transactions increase, the image of clothing has a great influence on consumer purchasing decisions. The importance of image information for clothing materials has been emphasized, and it is important for the fashion industry to analyze clothing images and grasp the materials used. Textile materials used for clothing are difficult to identify with the naked eye, and much time and cost are consumed in sorting. This study aims to classify the materials of textiles from clothing images based on deep learning algorithms. Classifying materials can help reduce clothing production costs, increase the efficiency of the manufacturing process, and contribute to the service of recommending products of specific materials to consumers. We used machine vision-based deep learning algorithms ResNet and Vision Transformer to classify clothing images. A total of 760,949 images were collected and preprocessed to detect abnormal images. Finally, a total of 167,299 clothing images, 19 textile labels and 20 fabric labels were used. We used ResNet and Vision Transformer to classify clothing materials and compared the performance of the algorithms with the Top-k Accuracy Score metric. As a result of comparing the performance, the Vision Transformer algorithm outperforms ResNet.

Application and development of a machine learning based model for identification of apartment building types - Analysis of apartment site characteristics based on main building shape - (머신러닝 기반 아파트 주동형상 자동 판별 모형 개발 및 적용 - 주동형상에 따른 아파트 개발 특성분석을 중심으로 -)

  • Sanguk HAN;Jungseok SEO;Sri Utami Purwaningati;Sri Utami Purwaningati;Jeongseob KIM
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.2
    • /
    • pp.55-67
    • /
    • 2023
  • This study aims to develop a model that can automatically identify the rooftop shape of apartment buildings using GIS and machine learning algorithms, and apply it to analyze the relationship between rooftop shape and characteristics of apartment complexes. A database of rooftop data for each building in an apartment complex was constructed using geospatial data, and individual buildings within each complex were classified into flat type, tower type, and mixed types using the random forest algorithm. In addition, the relationship between the proportion of rooftop shapes, development density, height, and other characteristics of apartment complexes was analyzed to propose the potential application of geospatial information in the real estate field. This study is expected to serve as a basic research on AI-based building type classification and to be utilized in various spatial and real estate analyses.

Deep Learning-based Object Detection of Panels Door Open in Underground Utility Tunnel (딥러닝 기반 지하공동구 제어반 문열림 인식)

  • Gyunghwan Kim;Jieun Kim;Woosug Jung
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.3
    • /
    • pp.665-672
    • /
    • 2023
  • Purpose: Underground utility tunnel is facility that is jointly house infrastructure such as electricity, water and gas in city, causing condensation problems due to lack of airflow. This paper aims to prevent electricity leakage fires caused by condensation by detecting whether the control panel door in the underground utility tunnel is open using a deep learning model. Method: YOLO, a deep learning object recognition model, is trained to recognize the opening and closing of the control panel door using video data taken by a robot patrolling the underground utility tunnel. To improve the recognition rate, image augmentation is used. Result: Among the image enhancement techniques, we compared the performance of the YOLO model trained using mosaic with that of the YOLO model without mosaic, and found that the mosaic technique performed better. The mAP for all classes were 0.994, which is high evaluation result. Conclusion: It was able to detect the control panel even when there were lights off or other objects in the underground cavity. This allows you to effectively manage the underground utility tunnel and prevent disasters.

Effects of Stretching Time on Head Spine Angle and Muscle Tone (스트레칭 후 시간 경과에 따른 머리척추각과 근긴장도 변화 연구)

  • Ji-Yun Son;Young-Chun Yu;Ji-Yoon Kim;Hee-Won Park;Ji-Hyun Yu;Yu-Gwon Lee;Byeong-Eon Lim;Ji-Myeong Choi;Jae-Hyun Kim
    • Advanced Industrial SCIence
    • /
    • v.2 no.3
    • /
    • pp.15-21
    • /
    • 2023
  • In this study, we wanted to know the change in the craniovertebral angle before and after stretching and muscle tone according to rest time immediately after stretching. 57 students in their 20s and 30s were targeted, and the craniovertebral angle was compared before and after stretching. Static manual stretching was applied for stretching, and after 30 seconds, it was repeated three times with a break time of 10 seconds, and before stretching, immediately after, two minutes after, and five minutes after stretching were measured using muscle tone measuring equipment. As a result, there was no significant difference in craniovertebral angle before and after stretching, and the change in muscle tone according to the rest time after stretching was more significant after 5 minutes than before stretching. It is more effective to take five minutes to rest after stretching, reduce muscle tone than working immediately after stretching.