• Title/Summary/Keyword: Agriculture and Forestry

Search Result 1,243, Processing Time 0.031 seconds

Cationized Lignin Loaded Alginate Beads for Efficient Cr(VI) Removal

  • Jungkyu KIM;YunJin KIM;Seungoh JUNG;Heecheol YUN;Hwanmyeong YEO;In-Gyu CHOI;Hyo Won KWAK
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.5
    • /
    • pp.321-333
    • /
    • 2023
  • In this study, lignin, a lignocellulosic biomass, was chemically modified to produce polyethyleneimine-grafted lignin (PKL) with maximum hexavalent chromium [Cr(VI)] adsorption capacity. Changes in the physicochemical properties due to the cationization of lignin were confirmed through elemental analysis, Fourier transform infrared spectroscopy, and moisture stability evaluation. Alginate (Alg) beads containing PKL (Alg/PKL) were prepared by incorporating cationic lignin into the Alg matrix to apply the prepared PKL in a batch-type water treatment process. The optimal Alg/lignin mixing ratio was selected to increase the Cr(VI) adsorption capacity and minimize lignin elution from the aqueous system. The selected Alg/PKL beads exhibited an excellent Cr(VI) removal capacity of 478.98 mg/g. Isothermal adsorption and thermodynamic analysis revealed that the Cr(VI) removal behavior of the Alg/PKL beads was similar to that of heterogeneous chemical adsorption. In addition, the bulk adsorbent material in the form of beads exhibited adsorption behavior in three stages: surface adsorption, diffusion, and equilibrium.

Identification and Expression Patterns of fvexpl1, an Expansin-Like Protein-Encoding Gene, Suggest an Auxiliary Role in the Stipe Morphogenesis of Flammulina velutipes

  • Huang, Qianhui;Han, Xing;Mukhtar, Irum;Gao, Lingling;Huang, Rongmei;Fu, Liping;Yan, Junjie;Tao, Yongxin;Chen, Bingzhi;Xie, Baogui
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.4
    • /
    • pp.622-629
    • /
    • 2018
  • Expansins are cell wall proteins that mediate cell wall loosening and promote specific tissue and organ morphogenesis in plants and in some microorganisms. Unlike plant expansins, the biological functions of fungal expansin-like proteins have rarely been discussed. In the present study, an expansin-like protein-encoding fvexpl1 gene, was identified from Flammulina velutipes by using local BLAST. It consisted of five exons with a total length of 822 bp. The deduced protein FVEXPL1 contained 274 amino acids with a predicted molecular mass and isoelectric point of 28,589 Da and pH 4.93, respectively. The first 19 amino acids from the N terminal are the signal peptide. Phylogenetic analysis and multiple protein alignment indicated FVEXPL1 was an expansin-like protein. The expression level of fvexpl1 gene in the stipe was significantly higher than that in the mycelia, primordia, and cap. However, the expression level of fvexpl1 gene was significantly higher in the fast elongation region of the stipe as compared with the slow elongation region. Expression analysis indicated that fvexpl1 gene might have an auxiliary role in the stipe morphogenesis of F. velutipes.

Effect of Ethanol Fractionation of Lignin on the Physicochemical Properties of Lignin-Based Polyurethane Film

  • Sungwook WON;Junsik BANG;Sang-Woo PARK;Jungkyu KIM;Minjung JUNG;Seungoh JUNG;Heecheol YUN;Hwanmyeong YEO;In-Gyu CHOI;Hyo Won KWAK
    • Journal of the Korean Wood Science and Technology
    • /
    • v.52 no.3
    • /
    • pp.221-233
    • /
    • 2024
  • Lignin, a prominent constituent of woody biomass, is abundant in nature, cost-effective, and contains various functional groups, including hydroxyl groups. Owing to these characteristics, they have the potential to replace petroleum-based polyols in the polyurethane industry, offering a solution to environmental problems linked to resource depletion and CO2 emissions. However, the structural complexity and low reactivity of lignin present challenges for its direct application in polyurethane materials. In this study, Kraft lignin (KL), a representative technical lignin, was fractionated with ethanol, an eco-friendly solvent, and mixed with conventional polyols in varying proportions to produce polyurethane films. The results of ethanol fractionation showed that the polydispersity of ethanol-soluble lignin (ESL) decreased from 3.71 to 2.72 and the hydroxyl content of ESL increased from 4.20 mmol/g to 5.49 mmol/g. Consequently, the polyurethane prepared by adding ESL was superior to the KL-based film, exhibiting improved miscibility with petrochemical-based polyols and reactivity with isocyanate groups. Consequently, the films using ESL as the polyol exhibited reduced shrinkage and a more uniform structure. Optical microscope and scanning electron microscope observations confirmed that lignin aggregation was lower in polyurethane with ESL than in that with KL. When the hydrophobicity of the samples was measured using the water contact angle, the addition of ESL resulted in higher hydrophobicity. In addition, as the amount of ESL added increased, an increase of 7.4% in the residual char was observed, and a 4.04% increase in Tmax the thermal stability of the produced polyurethane was effectively improved.

Isolation and Characterization of a Gene Encoding Hexokinase from Loquat (Eriobotrya japonica Lindl.)

  • Qin, Qiaoping;Zhang, Lanlan;Xu, Kai;Jiang, Li;Cheng, Longjun;Xu, Chuanmei;Cui, Yongyi
    • Horticultural Science & Technology
    • /
    • v.30 no.3
    • /
    • pp.243-249
    • /
    • 2012
  • Hexokinase is the first enzyme in the hexose assimilation pathway; it acts as a sensor for plant sugar responses, and it is also important in determining the fruit sugar levels. The full-length cDNA of a hexokinase gene was isolated from loquat through reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends, which was designated as EjHXK1. EjHXK1 is 1,839 bp long and contains an entire open reading frame encoding 497 amino acids. The predicted protein of EjHXK1 shares 72%-81% similarity with other plant hexokinases. Phylogeny analysis indicated that EjHXK1 is closely related to maize and rice hexokinases. Transient expression of the 35S: EjHXK1-GFP fusion protein was observed on the cell membrane and cytoplasm. Real-time RT-PCR indicated that EjHXK1 is expressed in loquat leaves, stems, flowers, and fruits. EjHXK1 transcripts were higher during early fruit development, but decreases before maturation, which is consistent with hexokinase enzyme activity during fruit development and conducive for hexose accumulation in mature fruits. These results imply that EjHXK1 may play important roles in the regulation of sugar flux during fruit ripening.

Conversion of Glucose and Xylose to 5-Hydroxymethyl furfural, Furfural, and Levulinic Acid Using Ethanol Organosolv Pretreatment under Various Conditions

  • Ki-Seob, GWAK;Chae-Hwi, YOON;Jong-Chan, KIM;Jong-Hwa, KIM;Young-Min, CHO;In-Gyu, CHOI
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.6
    • /
    • pp.475-489
    • /
    • 2022
  • The objective of this study was to understand the conversion characteristics of glucose and xylose using the major monosaccharide standards for lignocellulosic biomass. The acid-catalyzed organosolv pretreatment conducted using ethanol was significantly different from the acid-catalyzed process conducted in an aqueous medium. 5-hydroxymethylfurfural (5-HMF), levulinic acid and furfural were produced from glucose conversion. The maximum yield of 5-HMF was 5.5%, at 200℃, when 0.5% sulfuric acid was used. The maximum yield of levulinic acid was 21.5%, at 220℃, when 1.0% sulfuric acid was used. Furfural was produced from xylose conversion and under 0.5% sulfuric acid, furfural reached the maximum yield 48.5% at 210℃. Ethyl levulinate and methyl levulinate were also formed from the glucose standard following the esterification reaction conducted under conditions of the combined conversion method, which proceeded under both ethanol-rich and water-rich conditions.

Rural Communication in the Covid-19 Pandemic: an Empirical Analysis from Thua Thien Hue Province, Central Vietnam

  • Nguyen, Hien Thi Dieu;Nguyen, Chung Van;Pham, Chung;Nguyen, Phong Thanh;Le, Cuong Chi Hung;Pham, Nhung Thi;Tran, Nguyet Thi Anh
    • Journal of Contemporary Eastern Asia
    • /
    • v.21 no.1
    • /
    • pp.33-42
    • /
    • 2022
  • The world has witnessed the outbreak of the Covid-19 epidemic. Mainstream and social media are playing an important role in Covid-19 pandemic prevention. This research explores awareness, communication channels and effectiveness of communication in the Covid-19 pandemic in rural areas of Thua Thien Hue province, Central Vietnam. Primary information was collected from 181 respondents, who are farmers, non-farmers and students. Secondary information was collected from reports and statistical data. Television, word of mouth and local loudspeakers are the main channels of mainstream media while social media mentions the role of Facebook and Zalo to transfer Covid-19 pandemic information. Mainstream media is still the main channel of farmers and old people while non-farmers and young people tend to access information through social media. Communication has significantly contributed to improving awareness and action of rural people in the Covid-19 epidemic prevention.

Effects of Selenizing Codonopsis pilosula Polysaccharide on Macrophage Modulatory Activities

  • Qin, Tao;Ren, Zhe;Lin, Dandan;Song, Yulong;Li, Jian;Ma, Yufang;Hou, Xuehan;Huang, Yifan
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.8
    • /
    • pp.1358-1366
    • /
    • 2016
  • The purpose of the present study was to investigate the immune-enhancing activity of selenizing Codonopsis pilosula polysaccharide (sCPPS5) in nonspecific immune response. In in vitro experiment, the results showed that sCPPS5 could promote the phagocytic uptake, NO production, and TNF-α and IL-6 secretion of RAW264.7 cells. sCPPS5 could also strongly increase the IκB-α degradation in the cytosol and the translocation of NF-κB p65 subunit into the nucleus of RAW264.7 cells. In the vivo experiment, sCPPS5 at medium doses could significantly improve the phagocytic index of peritoneal macrophages and induce the secretion of TNF-α and IL-6. Moreover, the effect of sCPPS5 was significantly better than Codonopsis pilosula polysaccharide (CPPS). These results indicated that selenylation modification could significantly enhance the immune-enhancing activity of CPPS in the nonspecific immune response.

Identification and Characterization of Two New S-Adenosylmethionine-Dependent Methyltransferase Encoding Genes Suggested Their Involvement in Stipe Elongation of Flammulina velutipes

  • Huang, Qianhui;Mukhtar, Irum;Zhang, Yelin;Wei, Zhongyang;Han, Xing;Huang, Rongmei;Yan, Junjie;Xie, Baogui
    • Mycobiology
    • /
    • v.47 no.4
    • /
    • pp.441-448
    • /
    • 2019
  • Two new SAM-dependent methyltransferase encoding genes (fvsmt1 and fvsmt2) were identified from the genome of Flammulina velutipes. In order to make a comprehensive characterization of both genes, we performed in silico analysis of both genes and used qRT-PCR to reveal their expression patterns during the development of F. velutipes. There are 4 and 6 exons with total length of 693 and 978 bp in fvsmt2 and fvsmt1, respectively. The deduced proteins, i.e., FVSMT1 and FVSMT2 contained 325 and 230 amino acids with molecular weight 36297 and 24894 Da, respectively. Both proteins contained a SAM-dependent catalytic domain with signature motifs (I, p-I, II, and III) defining the SAM fold. SAM-dependent catalytic domain is located either in the middle or at the N-terminal of FVSMT2 and FVSMT1, respectively. Alignment and phylogenic analysis showed that FVSMT1 is a homolog to a protein-arginine omega-N-methyltransferase, while FVSMT2 is of cinnamoyl CoA O-methyltransferase type and predicted subcellular locations of these proteins are mitochondria and cytoplasm, respectively. qRT-PCR showed that fvsmt1 and fvsmt2 expression was regulated in different developmental stages. The maximum expression levels of fvsmt1 and fvsmt2 were observed in stipe elongation, while no difference was found in mycelium and pileus. These results positively demonstrate that both the methyltransferase encoding genes are involved in the stipe elongation of F. velutipes.