• Title/Summary/Keyword: Agricultural profile

Search Result 483, Processing Time 0.024 seconds

A Study on 3 Dimensional Modeling of Keum-man Connection Canal using GIS and considering Hydraulic Analysis (GIS와 수리학적 해석을 고려한 금만연결수로의 3차원 모델링에 관한 연구)

  • Kim, Dae-Sik;Nam, Sang-Woon;Kim, Tai-Cheol
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.5
    • /
    • pp.3-15
    • /
    • 2008
  • This study aims to simulate the 3 dimensional (3D) model of Keum-man connection canal using geographic information system (GIS) as well as considering design in viewpoint of engineering. The canal connects from Keumkang to Mangyungkang in order to supply fresh water into Saemankeum lake. This study used 3 dimensional spatial planning model (3DSPLAM) process to generate the 3D model, which has not only several planning layers in actual process, but also their corresponding layers in modeling process to simulate 3D space of rural villages. The discharge of the canal is $20m^3/s$ on slope of 1/28,400 in the canal length of 14.2km, which consists of pipe line and open channel. This study surveyed the route of the canal and its surrounding environment for facilities to make images in the 3D graphic model. Besides, the present study developed data set in GIS for geogrphical surface modeling as well as parameters in hydraulic analysis for water surface profile on the canal using HEC-RAS model. From the data set constructed, this study performed analysis of water surface profile with HEC-RAS, generation of digital elevation model (DEM) and 3D objects, design of the canal section and route on DEM in AutoCAD, and 3D canal model and its surrounding 3D space in 3DMAX with virtual reality. The study result showed that the process making 3D canal model tried in this study is very useful to generate computer graphic model with the designed canal on the surface of DEM. The generated 3D canal can be used to assist decision support for the canal policy.

Changes in the metabolic profile and nutritional composition of rice in response to NaCl stress

  • Nam, Kyong-Hee;Kim, Do Young;Shin, Hee Jae;Pack, In-Soon;Kim, Chang-Gi
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.2
    • /
    • pp.154-168
    • /
    • 2018
  • Salinity is a major abiotic stress that adversely affects crop productivity and quality. In this study, the metabolic profile and nutritional composition of rice in response to NaCl were analyzed. The plants were exposed to stressed or unstressed conditions, and their metabolic changes were examined in the shoots, roots, and grains collected at different growth stages. The levels of nutrients and anti-nutrients, including proximates, amino acids, fatty acids, minerals, vitamins, and phytic acid, were also determined for the grains. Application of NaCl significantly decreased the shoot and root growth and induced metabolic alterations at the tillering stage. During the heading stage, only the root metabolites were influenced by NaCl, and no metabolic variations related to salinity were found in the shoot, roots, and grains at the ripening stage. Nutritional analysis of the grain samples revealed that the amounts of linolenic acid and tricosanoic acid were significantly reduced while those of copper, sodium, and phytic acid were enhanced in response to stress. However, except for sodium, those differences were not great. Our results suggest that although NaCl-salinity influences the phenotypic and metabolic profiles of rice shoots and roots at the tillering stage, this impact becomes negligible as tissue development proceeds. This is especially true for the grains. Compositional analysis of the grains indicated that salinity induces some changes in fatty acids, minerals, and anti-nutrients.

Quality traits of pork from cross-bred local pigs reared under free-range and semi-intensive systems

  • Ranasinghe, Navoda;Ranasinghe, Madushika Keshani;Tharangani, Himali;Nawarathne, Shan Randima;Heo, Jung Min;Jayasena, Dinesh Darshaka
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.3
    • /
    • pp.455-464
    • /
    • 2021
  • This study was conducted to evaluate meat quality traits, proximate composition, fatty acid profile and sensory attributes of pork produced under free-range and semi-intensive pig rearing systems. Longissimus dorsi muscles from pork carcasses were taken just after the slaughtering of finishing pigs reared under semi-intensive and free-range systems to test the meat quality parameters (pH, color, water holding capacity, and cooking loss), proximate composition (moisture, protein, fat, and ash) and fatty acid profile. Furthermore, the organoleptic properties were evaluated using 30 untrained panelists. The results revealed that the system of rearing did not affect (p > 0.05) the proximate composition, water holding capacity, color, pH and cooking loss of pork along with the fatty acid composition except for vaccenic acid (p < 0.05). The monounsaturated fatty acid (MUFA) content was affected (p < 0.05) by the rearing system while no effects were observed on the unsaturated fatty acid: saturated fatty acid ratio and omega-six to omega-three fatty acids ratios (p > 0.05). No difference was observed (p > 0.05) concerning the sensory attributes although pork obtained from the free-range system had the highest scores. In conclusion, the system of rearing did not show a significant effect on the meat quality parameters, composition and sensory attributes of pork obtained from cross-bred pigs.

Performance, hemato-biochemical indices and oxidative stress markers of broiler chicken fed phytogenic during heat stress condition

  • Olatunji Abubakar, Jimoh;Olajumoke Temidayo, Daramola;Hafsat Ololade, Okin-Aminu;Olayinka Abosede, Ojo
    • Journal of Animal Science and Technology
    • /
    • v.64 no.5
    • /
    • pp.970-984
    • /
    • 2022
  • Thermal stress is a tremendous health predicament encountered by poultry farmers with adverse effects on the performance, product stature, health condition, survival, and overall welfare of poultry birds, and so requires urgent dietary user-friendly strategy to curb. This study was conducted with 200-day old broilers for the purpose of investigating the potential of phytogenics in refining the negative effects of heat stress on broiler chicken. Moringa, Phyllanthus and mistletoe leaves were processed as phytogenic supplements and incorporated into standard ration for broilers as treatments B1 (control), B2, B3 and B4 diet during the peak of thermal discomfort in humid tropics. Growth and carcass indices were monitored in a 49-day trial and blood samples were harvested at the end of the ordeal period to assess haematology, serum biochemical and oxidative stress markers with the use of standard procedures. The results obtained showed that the prevailing environmental condition in the study site indicated that the birds were exposed to heat stress. Birds fed on moringa and mistletoe supplements had higher performance index than birds without supplementation during heat stress condition, while birds fed on mistletoe supplement had the highest survival rate across the treatments. The liveweight, slaughter weight, dressed weight and eviscerated weight of heat stressed birds fed on moringa, phyllanthus and mistletoe supplements were significantly higher than birds on control treatment. Heterophyl/lymphocyte ratio of heat stressed birds without supplement were higher than birds on phytogenic supplements, with least values recorded in phyllanthus and mistletoe fed birds. Birds on phytogenic supplement tend to have lower cholesterol profile, lipid peroxidation and better antioxidant profile than birds on control treatment during heat stress conditions. Mistletoe supplementation in broiler ration enhances the survival rate, as well as promotes growth indices better among the phytogenic supplements. However, phytogenic supplements did ameliorate the negative effects of thermal discomfort on performance, physiological and oxidative stress in heat-stressed broiler chicken.

On-Farm and Processing Factors Affecting Rabbit Carcass and Meat Quality Attributes

  • Sethukali Anand Kumar;Hye-Jin Kim;Dinesh Darshaka Jayasena;Cheorun Jo
    • Food Science of Animal Resources
    • /
    • v.43 no.2
    • /
    • pp.197-219
    • /
    • 2023
  • Rabbit meat has high nutritional and dietetic characteristics, but its consumption rate is comparatively lower than other meat types. The nutritional profile of rabbit meat, by comparison with beef, pork, and poultry, is attributed to relatively higher proportions of n-3 fatty acids and low amounts of intramuscular fat, cholesterol, and sodium, indicating its consumption may provide health benefits to consumers. But, the quality attributes of rabbit meat can be originated from different factors such as genetics, environment, diet, rearing system, pre-, peri-, and post-slaughter conditions, and others. Different rabbit breeds and the anatomical location of muscles may also affect the nutritional profile and physicochemical properties of rabbit meat. However, adequate information about the effect of those two factors on rabbit meat is limited. Therefore, cumulative information on nutritional composition and carcass and meat quality attributes of rabbit meat in terms of different breeds and muscle types and associated factors is more important for the production and processing of rabbits. Moreover, some studies reported that rabbit meat proteins exhibited angiotensin-converting enzyme inhibitory characteristics and antioxidant properties. The aim of this review is to elucidate the determinants of rabbit meat quality of different breeds and its influencing factors. In addition, the proven biological activities of rabbit meat are introduced to ensure consumer satisfaction.

Air Sampling and Isotope Analyses of Water Vapor and CO2 using Multi-Level Profile System (다중연직농도시스템(Multi-Level Profile System)을 이용한 수증기와 이산화탄소 시료채취 및 안정동위원소 조성 분석)

  • Lee, Dong-Ho;Kim, Su-Jin;Cheon, Jung-Hwa;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.4
    • /
    • pp.277-288
    • /
    • 2010
  • The multi-level $H_2O/CO_2$ profile system has been widely used to quantify the storage and advection effects on energy and mass fluxes measured by eddy covariance systems. In this study, we expanded the utility of the profile system by accommodating air sampling devices for isotope analyses of water vapor and $CO_2$. A pre-evacuated 2L glass flask was connected to the discharge of an Infrared Gas Analyzer (IRGA) of the profile system so that airs with known concentration of $H_2O$ and $CO_2$ can be sampled. To test the performance of this sampling system, we sampled airs from 8 levels (from 0.1 to 40 m) at the KoFlux tower of Gwangneung deciduous forest, Korea. Air samples in the 2L flask were separated into its component gases and pure $H_2O$ and $CO_2$ were extracted by using a vacuum extraction line. This novel technique successfully produced vertical profiles of ${\delta}D$ of $H_2O$ and ${\delta}^{13}C$ of $CO_2$ in a mature forest, and estimated ${\delta}D$ of evapotranspiration (${\delta}D_{ET}$) and ${\delta}^{13}C$ of $CO_2$ from ecosystem respiration (${\delta}^{13}C_{resp}$) by using Keeling plots. While technical improvement is still required in various aspects, our sampling system has two major advantages over other proposed techniques. First, it is cost effective since our system uses the existing structure of the profile system. Second, both $CO_2$ and $H_2O$ can be sampled simultaneously so that net ecosystem exchange of $H_2O$ and $CO_2$ can be partitioned at the same temporal resolution, which will improve our understanding of the coupling between water and carbon cycles in terrestrial ecosystems.

Effect of different levels of protein concentrates supplementation on the growth performance, plasma amino acids profile and mTOR cascade genes expression in early-weaned yak calves

  • Peng, Q.H.;Khan, N.A.;Xue, B.;Yan, T.H.;Wang, Z.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.2
    • /
    • pp.218-224
    • /
    • 2018
  • Objective: This study evaluated the effects of different levels of protein concentrate supplementation on the growth performance of yak calves, and correlated the growth rate to changes occurring in the plasma- amino acids, -insulin profile, and signaling activity of mammalian target of rapamycin (mTOR) cascade to characterize the mechanism through which the protein synthesis can be improved in early weaned yaks. Methods: For this study, 48 early (3 months old) weaned yak calves were selected, and assigned into four dietary treatments according to randomized complete block design. The four blocks were balanced for body weight and sex. The yaks were either grazed on natural pasture (control diet) in a single herd or the grazing yaks was supplemented with one of the three protein rich supplements containing low (17%; LP), medium (19%; MP), or high (21%; HP) levels of crude proteins for a period of 30 days. Results: Results showed that the average daily gain of calves increased (0.14 vs 0.23-0.26 kg; p<0.05) with protein concentrates supplementation. The concentration of plasma methionine increased (p<0.05; 8.6 vs $10.1-12.4{\mu}mol/L$), while those of serine and tyrosine did not change (p>0.05) when the grazing calves were supplemented with protein concentrates. Compared to control diet, the insulin level of calves increased (p<0.05; 1.86 vs $2.16-2.54{\mu}IU/mL$) with supplementation of protein concentrates. Addition of protein concentrates up-regulated (p<0.05) expression of mTOR-raptor, mammalian vacuolar protein sorting 34 homolog, the translational regulators eukaryotic translation initiation factor 4E binding protein 1, and S6 kinase 1 genes in both Longissimus dorsi and semitendinosus. In contrast, the expression of sequestosome 1 was down-regulated in the concentrate supplemented calves. Conclusion: Our results show that protein supplementation improves the growth performance of early weaned yak calves, and that plasma methionine and insulin concentrations were the key mediator for gene expression and protein deposition in the muscles.

Effects of different space allowances on growth performance, blood profile and pork quality in a grow-to-finish production system

  • Jang, J.C.;Jin, X.H.;Hong, J.S.;Kim, Y.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.12
    • /
    • pp.1796-1802
    • /
    • 2017
  • Objective: This experiment was conducted to evaluate the optimal space allowance on growth performance, blood profile and pork quality of growing-finishing pigs. Methods: A total of ninety crossbred pigs [$(Yorkshire{\times}Landrace){\times}Duroc$, $30.25{\pm}1.13kg$] were allocated into three treatments (0.96: four pigs/pen, $0.96m^2/pig$; 0.80: five pigs/pen, $0.80m^2/pig$; 0.69: six pigs/pen, $0.69m^2/pig$) in a randomized complete block design. Pigs were housed in balanced sex and had free access to feed in all phases for 14 weeks (growing phase I, growing phase II, finishing phase I, and finishing phase II). Results: There was no statistical difference in growing phase, but a linear decrease was observed on average daily gain (ADG, p<0.01), average daily feed intake (ADFI, p<0.01), and body weight (BW, p<0.01) with decreasing space allowance in late finishing phase. On the other hand, a quadratic effect was observed on gain to feed ratio in early finishing phase (p<0.03). Consequently, overall ADG, ADFI, and final BW linearly declined in response to decreased space allowance (p<0.01). The pH of pork had no significant difference in 1 hour after slaughter, whereas there was a linear decrease in 24 h after slaughter with decreasing space allowance. Floor area allowance did not affect pork colors, but shear force linearly increased as floor space decreased (p<0.01). There was a linear increase in serum cortisol concentration on 14 week (p<0.05) with decreased space allocation. Serum IgG was linearly ameliorated as space allowance increased on 10 week (p<0.05) and 14 week (p<0.01). Conclusion: Data from current study indicated that stress derived from reduced space allowance deteriorates the immune system as well as growth performance of pigs, resulting in poor pork quality. Recommended adequate space allowance in a grow-to-finish production system is more than $0.80m^2/pig$ for maximizing growth performance and production efficiency.

Structural Components Of The Digital Competence Of The Master Of Production Training Of The Agricultural Profile

  • Kovalchuk, Vasyl;Zaika, Artem;Hriadushcha, Vira;Kucherak, Iryna
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.259-267
    • /
    • 2022
  • With the rapid development and introduction of digital technologies, both everyday human life and technological processes of any production are changing, which stimulates the transformation of the economy and education. Digital technologies are not only a tool, but also a living environment of modern human, which opens up new opportunities: learning at any convenient time, continuing education, the ability to form individual educational learning trajectories and more. However, the digital environment requires teachers to take a modern approach to the organization of the educational process, the formation of new skills and abilities to work in the digital educational environment. As a result of the study, it was found that the system of vocational education should provide training for masters of industrial training who have a high level of digital competence. The purpose of the article is to single out, theoretically substantiate and determine the level of formation of structural components of digital competence of future masters of agricultural training. The structure of digital competence of agricultural master was analyzed on the basis of domestic and foreign scientists researches. Systematized research results indicate that digital competence consists of four components: motivational-value (combination of internal and external motives for the use of digital technologies in future professional activities), cognitive (a set of theoretical knowledge, skills and abilities of future master of industrial training to effectively build educational process with the use of digital technologies), activity-professional (expansion and deepening of knowledge, skills, necessary skills for effective implementation of digital technologies in the educational process) and evaluative-reflexive (ability to analyze and self-analyze own activities and its results taking into account professional characteristics, self-realization in professional activities through the use of digital technologies). These components are comparable with the indicators that describe the knowledge, skills and abilities needed by the future master of industrial training to organize the modern educational process. A questionnaire was conducted to determine the levels of this competence formation, which allows us to conclude that it is necessary to increase the level of formation of all components of digital competence of future masters of industrial training in agriculture. The results of the study can be used as a basis for the development of disciplines that form the special competencies of masters of industrial training in agriculture and programs of advanced training of teachers.

Effects of fermentation on protein profile of coffee by-products and its relationship with internal protein structure measured by vibrational spectroscopy

  • Samadi;Xin Feng;Luciana Prates;Siti Wajizah;Zulfahrizal;Agus Arip Munawar;Peiqiang Yu
    • Animal Bioscience
    • /
    • v.36 no.8
    • /
    • pp.1190-1198
    • /
    • 2023
  • Objective: To our knowledge, there are few studies on the correlation between internal structure of fermented products and nutrient delivery from by-products from coffee processing in the ruminant system. The objective of this project was to use advanced mid-infrared vibrational spectroscopic technique (ATR-FT/IR) to reveal interactive correlation between protein internal structure and ruminant-relevant protein and energy metabolic profiles of by-products from coffee processing affected by added-microorganism fermentation duration. Methods: The by-products from coffee processing were fermented using commercial fermentation product, called Saus Burger Pakan, consisting of various microorganisms: cellulolytic, lactic acid, amylolytic, proteolytic, and xylanolytic microbes, for 0, 7, 14, 21, and 28 days. Protein chemical profiles, Cornell Net Carbohydrate and Protein System crude protein and CHO subfractions, and ruminal degradation and intestinal digestion of protein were evaluated. The attenuated total reflectance-Ft/IR (ATR-FTIR) spectroscopy was used to study protein structural features of spectra that were affected by added microorganism fermentation duration. The molecular spectral analyses were carried using OMNIC software. Molecular spectral analysis parameters in fermented and non-fermented by-products from coffee processing included: Amide I area (AIA), Amide II (AIIA) area, Amide I heigh (AIH), Amide II height (AIIH), α-helix height (αH), β-sheet height (βH), AIA to AIIA ratio, AIH to AIIH ratio, and αH to βH ratio. The relationship between protein structure spectral profiles of by-products from coffee processing and protein related metabolic features in ruminant were also investigated. Results: Fermentation decreased rumen degradable protein and increased rumen undegradable protein of by-products from coffee processing (p<0.05), indicating more protein entering from rumen to the small intestine for animal use. The fermentation duration significantly impacted (p<0.05) protein structure spectral features. Fermentation tended to increase (p<0.10) AIA and AIH as well as β-sheet height which all are significantly related to the protein level. Conclusion: Protein structure spectral profiles of by-product form coffee processing could be utilized as potential evaluators to estimate protein related chemical profile and protein metabolic characteristics in ruminant system.