• Title/Summary/Keyword: Agricultural monitoring system

Search Result 405, Processing Time 0.031 seconds

Requirement Analysis of a System to Predict Crop Yield under Climate Change (기후변화에 따른 작물의 수량 예측을 위한 시스템 요구도 분석)

  • Kim, Junhwan;Lee, Chung Kuen;Kim, Hyunae;Lee, Byun Woo;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.1
    • /
    • pp.1-14
    • /
    • 2015
  • Climate change caused by elevated greenhouse gases would affect crop production through different pathways in agricultural ecosystems. Because an agricultural ecosystem has complex interactions between societal and economical environment as well as organisms, climate, and soil, adaptation measures in response to climate change on a specific sector could cause undesirable impacts on other sectors inadvertently. An integrated system, which links individual models for components of agricultural ecosystems, would allow to take into account complex interactions existing in a given agricultural ecosystem under climate change and to derive proper adaptation measures in order to improve crop productivity. Most of models for agricultural ecosystems have been used in a separate sector, e.g., prediction of water resources or crop growth. Few of those models have been desiged to be connected to other models as a module of an integrated system. Threfore, it would be crucial to redesign and to refine individual models that have been used for simulation of individual sectors. To improve models for each sector in terms of accuracy and algorithm, it would also be needed to obtain crop growth data through construction of super-sites and satellite sites for long-term monitoring of agricultural ecosystems. It would be advantageous to design a model in a sector from abstraction and inheritance of a simple model, which would facilitate development of modules compatible to the integrated prediction system. Because agricultural production is influenced by social and economical sectors considerably, construction of an integreated system that simulates agricultural production as well as economical activities including trade and demand is merited for prediction of crop production under climate change.

DEVELOPMENT OF A NEW MODEL OF DRYING SYSTEM FOR HIGH YIELD OF THE HEAVEN GRADE GINSENG

  • Chang, D.I.;Bahng, S.H.;Chang, Y.H.;Kang, H.Y.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.370-377
    • /
    • 2000
  • The red ginseng is very popular as a health food. It has been manufactured with raw ginseng by the conventional method. But, the yield of the heaven grade ginseng (the best quality red ginseng) among the whole products is around 5-7%, Therefore, the yield should be improved in order to increase economic returns. In this study, a new model of drying system was developed to improve the yield of heaven grade ginseng from 7% to 15% or more. For this system, temperature and relative humidity were controlled by the feedback control system, and a solenoid valve for steam supply and other variables were controlled by the PC. The special features of this system developed are an image processing system for monitoring the red ginseng during the drying process in the drying chamber, and a cylindrical porous tray for holding ginseng that is rotating with the speed of 0-10rpm in the drying chamber and makes uniform drying of red ginseng possible.

  • PDF

Design on Integrated Land and Water Resources Management System Based on Remote Sensing and GIS in Shehezi City

  • Zhu, Gaolong;Chen, Xiuwan
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.500-505
    • /
    • 2002
  • Based on the real-time monitoring by remote sensing and dynamic management by GIS on agricultural land and water resources in arid area, we solved the practicability and popularization of small-scale spatial information service system. Through demonstration, the standards of spatial information service database of agricultural land and water resources is set up, and the agricultural land and water resources management system in Shehezi City of Xinjiang Autonomy is established, which provides periodically the spatial information services needed by agricultural production to support for sustainable development in arid area.

  • PDF

Sensing Technologies for Grain Crop Yield Monitoring Systems: A Review

  • Chung, Sun-Ok;Choi, Moon-Chan;Lee, Kyu-Ho;Kim, Yong-Joo;Hong, Soon-Jung;Li, Minzan
    • Journal of Biosystems Engineering
    • /
    • v.41 no.4
    • /
    • pp.408-417
    • /
    • 2016
  • Purpose: Yield monitoring systems are an essential component of precision agriculture. They indicate the spatial variability of crop yield in fields, and have become an important factor in modern harvesters. The objective of this paper was to review research trends related to yield monitoring sensors for grain crops. Methods: The literature was reviewed for research on the major sensing components of grain yield monitoring systems. These major components included grain flow sensors, moisture content sensors, and cutting width sensors. Sensors were classified by sensing principle and type, and their performance was also reviewed. Results: The main targeted harvesting grain crops were rice, wheat, corn, barley, and grain sorghum. Grain flow sensors were classified into mass flow and volume flow methods. Mass flow sensors were mounted primarily at the clean grain elevator head or under the grain tank, and volume flow sensors were mounted at the head or in the middle of the elevator. Mass flow methods used weighing, force impact, and radiometric approaches, some of which resulted in measurement error levels lower than 5% ($R^2=0.99$). Volume flow methods included paddle wheel type and optical type, and in the best cases produced error levels lower than 3%. Grain moisture content sensing was in many cases achieved using capacitive modules. In some cases, errors were lower than 1%. Cutting width was measured by ultrasonic distance sensors mounted at both sides of the header dividers, and the errors were in some cases lower than 5%. Conclusions: The design and fabrication of an integrated yield monitoring system for a target crop would be affected by the selection of a sensing approach, as well as the layout and mounting of the sensors. For accurate estimation of yield, signal processing and correction measures should be also implemented.

Soil quality Assessment for Environmentally Sound Agriculture in the Mountainous Soils - Installation of Monitoring System and Background Data Collection - (산지에서의 환경보전형 농업을 위한 토양의 질 평가 -모니터링 시스템의 구축과 기초자료의 수집-)

  • 최중대;김정제;정진철
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.2
    • /
    • pp.113-123
    • /
    • 1997
  • This study was initiated to build runoff plots, install soil and water quality monitoring systems and collect background data from the plots and neighboring soils as the 1st year study of a 5 year project to assess soil quality and develop the management practices for environmentally sound agriculture in mountainous soils. Eleven $3{\times}15m$ runoff plots and monitoring systems were installed at a field of National Alpine Agricultural Experiment Station to monitor soil quality and discharge of nonpoint source pollutants. Corn and potato were cultivated under different fertilizer, tillage and residue cover treatments. The soil has a single-layered cluster structure that has a relatively good hydrologic properties and can adsorb a large amount of nutrient. Concentrations of T-N, $NH_4$-N, and $NO_3$-N of surface soil sampled in the winter were relatively high. Runoff quality in the winter and thawing season in the spring was largely dependent on surface freezing, snow accumulation, temperature, surface thawing depth and so on. Runoff during the thawing season caused serious soil erosion but runoff quality during the winter was relatively good. Serious wind erosion from unprotected fields after the fall harvest were obserbed and best management practices to reduce the erosion need to be developed.

  • PDF

Assessment of polluted factors in aquatic environment using near infrared spectroscopy

  • Norio, Sugiura;Zhang, Yansheng;Wei, Bin;Zhang, Zhenya;Isoda, Hiroko;Maekawa, Takaaki
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1272-1272
    • /
    • 2001
  • Eutrophication processes of aquatic environment are strictly correlated with the concentration levels of nitrogen, phosphorous, organic matter and biological parameters such as phytoplankton and chlorophylla (Tremel, 1996; Burns et al., 1997; Young et al. 1999; Wei et al.,2000). Accordingly, the monitoring and evaluation of these factors will provide useful information about the health of aquatic ecosystem. However, the traditional types of auqatic chemistry analysis and ecological monitoring of phytoplankton are time-consuming, costly, and further resulting in secondary pollution due to the use of reagents. NIR (near-infrared) spectroscopy, as a rapid, non-destructive, little sample preparation and reagents-free technology (Hildrum et al., 1992), has been extensively applied to the characterization of food (Osborne and Fearn, 1988), pharmaceutical (Morisseau and Rhodes, 1995) and textile materials (Clove et al.,2000). Currently, NIR technology has been used indirectly in inferring lake water chemistry by two approaches, suspended (Malley et al., 1996) or seston (Dabakk et al., 1999), and sediments (Korsman et al., 1992; Malley et al., 1999). In addition, the evaluation of trophic state and the identification of the key factors contributed to the trophication are the key step to restore the damaged aquatic environment. Moreover, an understanding of the factors, which regulate the algal proliferation, is crucial to the successful management of aquatic ecosystem. In the paper, NIR technology will be used to study the environmental factors affecting the algal proliferation in combination with the trophic state index and diversity index. This novel developed system can be applied in monitoring and evaluating allopathic water environment and provide real time information services for the aquatic environment management.

  • PDF

Yield Mapping of a Small Sized Paddy Field (소구획 경지에서의 벼 수확량 지도 작성)

  • 정선옥;박원규;장영창;이동현;박우풍
    • Journal of Biosystems Engineering
    • /
    • v.24 no.2
    • /
    • pp.135-144
    • /
    • 1999
  • An yield monitoring system plays a key role in precision farming. An yield monitoring system and a DGPS were implemented to a widely used domestic combine for yield mapping of a small sized paddy field, and yield mapping algorithms were investigated in this study. The yield variation in the 0.1ha rice paddy field was measured by installing a yield flow sensor and a grain moisture sensor at the end of the clean grain elevator discharging grains into a grain tank. Yield map of the test filed was drawn in a point map and a linear interpolated map based on the result of the field test. The size of a unit yield grid in yield mapping was determined based on the combine traveling speed, effective harvesting width and data storing period. It was possible to construct the yield map of a small sized paddy field.

  • PDF

Development of an Internet-based Monitoring System of a Rice Processing Complex (미곡 도정공장의 인터넷 기반 감시시스템 개발)

  • Yan, T.Y.;Chung, J.H.
    • Journal of Biosystems Engineering
    • /
    • v.29 no.3
    • /
    • pp.243-250
    • /
    • 2004
  • 본 연구에서는 국내 미곡도정공장의 도정기계 작동상태와 가공된 발 품질의 원격감시를 위해서 인터넷기반 감시시스템을 개발하고자 하였다. 인터넷 감시시스템은 Laboratory Virtual Instrument Engineering Workbench(Lab VIEW)를 이용하여 개발되었으며 Hypertext Transfer Protocol(HTTP)을 제공할 수 있는 중앙서버, 현장제어용 Programmable logic controller (PLC) 및 각종 센서 등으로 구성되었다. 비상상태를 대비하기 위하여 도정기계를 원격으로 제어(ON/OFF)할 수 있도록 제어알고리즘을 설계하였다. 개발된 인터넷기반 감시시스템은 미곡 도정공장에 설치한 모든 도정기계의 작동상태, 백미 탱크내의 백미 무게와 백미의 온도 및 평형상대습도를 실시간으로 감시할 수 있었으며, 원격으로 측정한 백미탱크내의 평형온도 및 평형상대습도를 이용하여 백미의 함수율도 예측할 수 있었다. 거리 및 인터넷속도에 의해 발생된 시간지연의 측정과 원격으로 수집된 자료의 검증을 통해 인터넷 감시시스템의 성능을 평가하였다. 인터넷상의 시간지연(서울-광주간)은 약 1.2$\pm$0.2s 이었다.

An Analysis on Collaborative Relationships of Stakeholders of KIAHS(Korea's Important Agricultural Heritage System) (국가중요농업유산 이해관계자의 협력관계 분석)

  • Lee, Yoo-Jick;Lee, Da-Young
    • Journal of Korean Society of Rural Planning
    • /
    • v.25 no.1
    • /
    • pp.11-20
    • /
    • 2019
  • The purpose of this study was to analyze the status of conservation and management of KIAHS(Korea's Important Agricultural Heritage System) by focusing on which of the conceptual and institutional characteristics and stakeholder activities, and to suggest improvement plans. The results were summarized as follows, first, insiders prioritize financial support and participate in plan execution and activities. Second, rural utilization and traditional agricultural succession activities and support are deficient. Third, administrators (intermediary) focuses primarily on KIAHS designation; ordinance enactment, manpower recruitment and other structural considerations are lacking. Fourth, the role of administrators (intermediary) is limited to operational funding and facility management support at the enforcement and activity stage. Fifth, outsiders besides visitors, such as the public or business enterprises, lacked participation methods. For the sustainable KIAHS, municipality must perceive agricultural heritage as a resource and recognize the importance, and treat it accordingly. The establishment of local-led conservation activities and movements must be considered in an enhanced investigation and excavation stage. The complementary policies that ensure continual support from experts from the first investigation and excavation stage to the final monitoring stage are necessary. The standards and regulations are necessary to achieve parity between conservation and maintenance of agricultural heritage, and its utilization.