• Title/Summary/Keyword: Agricultural fertilizer

Search Result 2,626, Processing Time 0.023 seconds

Changes of Chemical Characteristics of Soil Solution In Paddy Field from Fifty-Eight Years Fertilization Experiments

  • Kim, Myung Sook;Kim, Yoo Hak;Park, Seong Jin;Lee, Chang Hoon;Yun, Sun Gang;Sonn, Yeon Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.1
    • /
    • pp.22-29
    • /
    • 2015
  • The objectives of this study were to monitor the changes in soil solution nutrients and to evaluate their effect on rice uptake and yield. The changes of chemical characteristics of paddy soil solution were examined from the 58th fertilization experiment in which the continuous rice cropping experiment started in 1954 at the National Academy of Agricultural Science. The treatments were no fertilization (No fert.), inorganic fertilization (NPK), inorganic fertilizer plus rice straw compost (NPKC) and inorganic fertilizer plus silicate and lime fertilizer as a soil amendment (NPKCLS). The fertilizers were added at rates of standard fertilizer application rate in which nitrogen (N), phosphate ($P_2O_5$), potassium ($K_2O$), and sililcate ($SiO_2$) were applied at rates of $75{\sim}150kg\;ha^{-1}$, $70{\sim}86kg\;ha^{-1}$, $75{\sim}86kg\;ha^{-1}$, and $7.5Mg\;ha^{-1}$ respectively and lime was applied to neutralize soil acidity until 6.5. Average Electrical Conductivity (EC) of soil solution in NPKCLS and NPKC ranged from 1.16 to $2.00dS\;m^{-1}$. The $NH{_4}^+$ and $K^+$ levels in NPKCLS and NPKC were higher than that of the other treatments, due to high supply power of rice straw compost. The content of $H_3SiO{_4}^-$ was higher in NPKCLS because of silicate application. The dominant ions in soil solution were $Ca^{2+}$, $Mg^{2+}$ and $Na^+$ among cations and $HCO{_3}^-$, $SO{_4}^{2-}$, and $Cl^-$ among anions in all treatments. The continuous application of inorganic fertilizers plus rice straw compost (NPKC) and silicate fertilizer (NPKCLS) led to the changes of various chemical composition in soil solutions. Also, they had a significant impact on the improvement of rice inorganic uptake and grain yield. Especially, inorganic uptake by rice in NPKC and NPKCLS significantly increased than those in NPK plot; 14~46% for T-N, 32~36% for P, 43~57% for K, and 45~77% for Si. Therefore, the combined application of inorganic fertilizers with organic compost as a soil amendment is considered as the best fertilization practice in the continuous rice cropping for the improvement of crop productivity and soil fertility.

Tuber borchii Shapes the Ectomycorrhizosphere Microbial Communities of Corylus avellana

  • Li, Xiaolin;Zhang, Xiaoping;Yang, Mei;Yan, Lijuan;Kang, Zongjing;Xiao, Yujun;Tang, Ping;Ye, Lei;Zhang, Bo;Zou, Jie;Liu, Chengyi
    • Mycobiology
    • /
    • v.47 no.2
    • /
    • pp.180-190
    • /
    • 2019
  • In this study, eight-month-old ectomycorrhizae of Tuber borchii with Corylus avellana were synthesized to explore the influence of T. borchii colonization on the soil properties and the microbial communities associated with C. avellana during the early symbiotic stage. The results showed that the bacterial richness and diversity in the ectomycorrhizae were significantly higher than those in the control roots, whereas the fungal diversity was not changed in response to T. borchii colonization. Tuber was the dominant taxon (82.97%) in ectomycorrhizae. Some pathogenic fungi, including Ilyonectria and Podospora, and other competitive mycorrhizal fungi, such as Hymenochaete, had significantly lower abundance in the T. borchii inoculation treatment. It was found that the ectomycorrhizae of C. avellana contained some more abundant bacterial genera (e.g., Rhizobium, Pedomicrobium, Ilumatobacter, Streptomyces, and Geobacillus) and fungal genera (e.g., Trechispora and Humicola) than the control roots. The properties of rhizosphere soils were also changed by T. borchii colonization, like available nitrogen, available phosphorus and exchangeable magnesium, which indicated a feedback effect of mycorrhizal synthesis on soil properties. Overall, this work highlighted the interactions between the symbionts and the microbes present in the host, which shed light on our understanding of the ecological functions of T. borchii and facilitate its commercial cultivation.

Estimation of Agricultural By-products and Investigation on Nutrient Contents for Alternatives of Imported Oil-cakes (수입유박 대체 비료자원 발굴을 위한 농업부산물 발생량 추정 및 양분 함량 조사)

  • An, Nan-Hee;Lee, Sang-min;Cho, Jung-Rai;Lee, Cho-Rong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.4
    • /
    • pp.71-81
    • /
    • 2019
  • This research was conducted to improve availability of agricultural by-products, national natural resources that could be used as fertilizer source, by estimating the amount of production and collecting main contents of fertilizer substances from previous studies and data, in order to be used as basic data to investigate national resources that could be used as alternatives for imported oil-cakes in the future. Conversion factor was used to estimate annual production of agricultural by-products for main 34 crop types in 2018. For total agricultural by-products, rice straws accounted at 50.3% for the highest proportion, followed by 8.7% of rice husks, showing that by-products from rice harvest accounted at 59.0% for all by-products. Further, there were listed the contents of fertilizer substances (nitrogen, phosphoric acid, potash) in 40 types of by-products from agricultural areas. The average contents of nitrogen, phosphoric acid, and potash in agricultural by-products were 1.43%, 0.59%, and 1.90%, respectively. As a result of estimating the annual nitrogen supply amount from 26 agricultural by-products in 2018, it was found that it could supply 44,911 tons of nitrogen. The investigated by-products contained fertilizer substances such as nitrogen, phosphoric acid, and potash, but the contents were lower compared to castor oil-cake used as main component of organic fertilizer. Therefore, resource management plan needs to be established for efficient use of by-products because time, location, and nutrient content of agricultural by-product production were extremely different. Research on fertilizer and manure using agricultural by-products need to be conducted to develop and distribute alternatives for imported oil-cakes.

Effects of Mixed Organic Fertilizer Application with Rice Cultivation on Yield and Nitrogen Use Efficiency in Paddy Field (벼 재배시 혼합유기질비료 시용이 질소이용율과 수량에 미치는 영향)

  • Cho, Kwang-Rae;Won, Tae-Jin;Kang, Chang-Sung;Lim, Jae-Wook;Park, Kyeong-Yeol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.3
    • /
    • pp.152-159
    • /
    • 2009
  • This study was carried out to investigate optimum application rate with mixed organic fertilizer for chemical fertilizer alternative where the paddy rice (Chucheong) was cultivated in clay loam of paddy field. The mixed organic fertilizer were applied at 0, 50, 100 and 150% levels of recommended nitrogen by soil testing plot compared with plot of chemical fertilizer (nitrogen, phosphate and potash), respectively. The ammonium nitrogen content in paddy soil and surface water of mixed organic fertilizer 100% plot were higher than chemical fertilizer plot. The absorbed amount of nitrogen and nitrogen use efficiency by rice plant in mixed organic fertilizer 100% plot were higher than chemical fertilizer plot. The number of tillers on rice at 30 days and 60 days after transplanting mixed organic fertilizer 100% plot were many more than chemical fertilizer plot. The milled rice yield of mixed organic fertilizer 100% plot was increased by 4% than chemical fertilizer plot. The optimum application rate of mixed organic fertilizer was as follows ; $OAR_{MOF}(Mg\;ha^{-1})=[(NAR_{ST}{\div}NC_{MOF}/1,000{\times}0.93)/1,000]$ ($OAR_{MOF}$ : Optimum application rate of mixed organic fertilizer, NARST : Nitrogen application rate($kg\;ha^{-1}$) by soil testing, $NC_{MOF}$ : Nitrogen content($g\;kg^{-1}$) of mixed organic fertilizer, and $0.93:124.3kg\;ha^{-1}/133.0kg\;ha^{-1}$, respectively).

Use of Industrial Wastes as Sources of Organic Fertilizer I. Resource Survey (산업폐기물(産業廢棄物)의 비료화(肥料化)에 관한 연구 I. 자원조사(資源調査))

  • Jeong, Gab-Young;Shin, Jae-Sung;Park, Young-Sun;Han, Ki-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.14 no.2
    • /
    • pp.83-87
    • /
    • 1981
  • To use of industrial wastes as sources of fertilizer, the waste materials from 75 factories through-out the country were collected and analyzed. The wastes from fermentation, paper manufacture, food processing and textile industries might be useful sources of fertilizer. They contained high organic matters, nutrients and relatively low heavy metals.

  • PDF

Analysis on Fertilizer Application Uniformity of Centrifugal Fertilizer Distributor

  • Kim, JiMan;Woo, Dukgam;Kim, Taehan
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.420-425
    • /
    • 2018
  • Purpose: Chemical fertilizers contribute to agricultural productivity. Annually, 450,000 tons of chemical fertilizers are used in Korea, which is 268 kg per hectare (MAFRA, 2016). However, excessive use causes problems such as environmental pollution and soil acidification. This study proposes use conditions for a fertilizer distributor that can reduce excessive fertilization by analyzing distribution patterns. Methods: This study analyzed fertilizer application uniformity according to the number of blades on a centrifugal fertilizer distributor (three or four blades), orifice gate open ratio (50 or 100%), and blade rotation speed (400, 500, or 600 rpm). Results: When using four blades, the coefficient of variation (CV) was lower than when using three by 11-13% points, and the CV using the 50% open ratio was 10-30% points lower than using the 100% open ratio. The CV at 500 rpm blade rotating speed was 9-12% points lower than that for 400 and 600 rpm. Conclusions: The CV with four blades, 50% orifice gate open ratio, and 500 rpm of blade rotating speed was 18.4%, which provided the most uniform fertilization.

The Relation between Fertilization Practices and Functional Metabolites of Crops: A Review

  • Lim, Jung-Eun;Cho, Min-Ji;Yun, Hye-Jin;Ha, Sang-Keun;Lee, Deog-Bae;Sung, Jwa-Kyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.2
    • /
    • pp.168-180
    • /
    • 2016
  • Various researches on the effects of fertilization levels on functional metabolites in crop have been conducted. This review summarizes the previous studies on the relation between fertilization supply and accumulation of metabolites (phenolics, carotenoids, ascorbic acid and glucosinolates) which function as antioxidants in crop. The accumulation of phenolic compounds is related to the activation of phenylalanine ammonia lyase (PAL) in phenylpropanoid pathway. Most of the previous studies discuss that low nitrogen (N) supply activates PAL, thereby increasing the synthesis of phenolics. Similarly, high N supply leads to a decrease in ascorbic acid because of the shading effect derived from the accelerated vegetative growth under high N level. Unlike the phenolics and ascorbic acid, carotenoids are accumulated with increasing N supply. In this regard, the previous studies explain that N is a main element closely associated with formation of key enzyme for the synthesis of carotenoids. Glucosinolates are generally increased under decreasing N supply and increasing S supply. Although the previous studies show similar trends about the accumulation of metabolites by nutrient level, they also suggest that many other factors including crop types, cultivars, cultural environment (water, temperature, light, etc.) influence the accumulation of functional metabolites in crop.

Hydraulic Characteristics of Arable Fields in Korea and Applicability of Pedotransfer Functions

  • Jung, Kangho;Sonn, Yeonkyu;Hur, Seungoh;Han, Kyunghwa;Cho, Heerae;Seo, Mijin;Jung, Munho;Choi, Seyeong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.655-661
    • /
    • 2016
  • Relationships between saturated conductivity (Ks) and separate contents were evaluated from 44 soil series of arable lands: 18 for paddy fields and 26 for upland crop fields. Saturated hydraulic conductivities of A, B, and C horizons were determined with tension infiltrometer and Guelph permeameter in situ. Sand, silt, clay, and organic matter content of each horizon were analyzed. Based on correlation analysis, sand separate had a positive relationship with Ks for both paddy (r=0.27, p=0.017) and upland fields (r=0.24. p=0.030). Clay content had a negative relationship with Ks for paddy soils (r=-0.32, p=0.005) while significant correlation between them was not found for upland crop fields (r=-0.20, p=0.07). Organic matter content showed a positive relationship with Ks only for upland crop fields (r=0.33, p=0.002). Due to low correlation coefficients between separate contents and Ks, performance of pedotransfer functions was not enough to estimate Ks. It implies that hydraulic properties of arable lands were affected by other factors rather than particle characteristics. Platy structure and plow pan were suggested to limit Ks of paddy fields. Soil compaction and diversity of parent materials were proposed to influence Ks of upland crop fields. It suggests that genetic processes and artificial managements should be included in pedotransfer functions to estimate hydraulic properties appropriately.

Changes of Chemical Properties in Upland Soils in Korea

  • Kong, Myung-Suk;Kang, Seong-Soo;Chae, Mi-Jin;Jung, Ha-il;Sonn, Yeon-Gyu;Lee, Deog-Bae;Kim, Yoo-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.588-592
    • /
    • 2015
  • Soil testing is one of the major strategies for establishing sustainable agricultural practice as it analyzes nutrient contents of soil and determines the amount of nutrients required for crop growth. Soil testing for the field cultivating regional major crops in Korea has been conducting by National Academy of Agricultural Science (NAAS), provincial agricultural research & extension services and agriculture technology centers since 2000. 1,006,227 soil samples were analyzed and uploaded on Korean soil information system (http://soil.rda.go.kr) from 2003 to 2013. Soil pH has changed from 6.1 to 6.2. Organic matter (OM), available (Avail.) phosphate and exchangeable (Exch.) K have decreased from 24 to $23gkg^{-1}$, 541 to $399mgkg^{-1}$ and 0.90 to $0.72cmol_ckg^{-1}$ between 2003 and 2013, respectively. Especially, Exch. Ca contents decreased to $5.7cmol_ckg^{-1}$ in 2009 and increased to $6.2cmol_ckg^{-1}$ in 2013. Ratios of optimal ranges for cropping were 48% for pH, 22% for OM, 26% for Avail. phosphate, and 23, 16, 22% for Exch. K, Ca and Mg in 2013. Ratios of optimal ranges for pH increased and low ranges for OM, Avail. phosphate and Exch. K increased. Frequency distribution was 64% for pH 5.5~7.0, 65% for OM $10{\sim}30gkg^{-1}$, 48% for Avail. phosphate under $300mgkg^{-1}$ and 23, 29, 22% for Exch. K 0.2~0.6, Ca 4.0~6.0 and Mg $1.0{\sim}1.5cmol_ckg^{-1}$.

Effects of Customized Fertilizer Application on Growth and Yield of Rice (맞춤형비료 시용에 따른 벼 생육 및 비료 사용량 절감 효과)

  • Lee, Jong-Sik;Song, Yo-Sung;Lee, Ye-Jin;Yun, Hong-Bae;Jang, Byong-Chun;Kim, Rog-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1124-1129
    • /
    • 2011
  • The importance of environment-friendly agriculture is being magnified as a new growth engine industry in pursuit of low carbon, green growth policies. In order to provide technical supports for pushing ahead with the environment-friendly agriculture policies, we estimated the effects of customized fertilization on growth and yield of rice and fertilizer reduction compared to conventional fertilization and single-element fertilization. In rice plant growth and rice yield, no statistically significant difference between the three fertilization treatments was observed. In contrast, customized fertilization showed high disaster resistance reducing the damage caused by rice lodging during a typhoon. The average N application in farms showing high rice lodging amounted to $135kg\;N\;ha^{-1}$ while $135-138kg\;N\;ha^{-1}$ was known as the critical range of rice lodging in Korea. The fertilizer reduction rate of customized fertilization compared to conventional fertilization of investigated farms was on average 22.5%. We estimated the short-term effects of customized fertilization in the first year after application. In future, there is need for continuous examination of rice growth and soil environment change due to successive application of customized fertilizer.