• Title/Summary/Keyword: Agricultural drought

Search Result 600, Processing Time 0.025 seconds

Spatial and Temporal Analysis of Drought Using the Storage Data of Agricultural Reservoirs in Chungnam Province in 2015 (농업용 저수지 저수율을 이용한 충남지역 2015년 가뭄 분석)

  • Kim, Sorae;Jang, Min-Won;Kim, Soojin;Bae, Seungjong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.2
    • /
    • pp.29-36
    • /
    • 2017
  • The objective of this study was to analyze the temporal and spatial characteristics of agricultural drought by tracking the daily reservoir storage in Chungnam province. All daily records of the percent of reservoir storage from 2000 to 2015 were collected for 130 irrigation reservoirs from the RIMS (Rural Infrastructure Management System). The temporal change of province-wide average reservoir storage and the statistics showed that the annual average and minimum percent of reservoir storage in 2015 were extremely low like as those in the historical drought years of 2001 and 2012. The minimum reservoir storage on record was a 41 % at the end of September and remained far less than its historical average even until the end of the year. Furthermore, the annual average reservoir storage (68.3 %) recorded the lowest on record since 2000. In addition, about half of 130 major irrigation reservoirs in Chungnam fell into the risk of water shortage below 30 % full, and, in terms of annual minimum reservoir storage, the 79 reservoirs yielded lower storage in 2015 comparing with the measured in another drought year, 2001. On the other hand, irrigation reservoirs of comparatively worse storage condition revealed to be mostly located on the inside, such as Cheongyang-gun and Hongsung-gun. Conclusively, the low reservoir storage, still far below average even on December 2015, induced a serious concern about that more extreme drought would happen in the next spring.

A Study on Parameter Estimation for SWAT Calibration Considering Streamflow of Long-term Drought Periods (장기 가뭄기간의 유출량을 고려한 SWAT 보정 매개변수 추정 연구)

  • Kim, Da Rae;Kim, Seong Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.2
    • /
    • pp.19-27
    • /
    • 2017
  • Recently, the hydrological model Soil Water Assessment Tool (SWAT) has been applied in many watersheds in South Korea. This study estimated parameters in SWAT for calibrating streamflow in long-term drought periods. Therefore, we focused on the continuous severe drought periods 2014~2015, and understand the model calibrated parameters. The SWAT was applied to a $366.5km^2$ Gongdo watershed by using 14 years (2002~2015) daily observed streamflow (Q) including two years extreme drought period of 2014~2015. The 9 parameters of CN2, CANMX, ESCO, SOL_K, SLSOIL, LAT_TIME, GW_DELAY, GWQMN, ALPHA_BF were selected for model calibration. The SWAT result by focusing on 5 normal years (2002~2006) calibration showed the 14 years average Nash-Sutcliffe model efficiency (NSE) for Q and 1/Q with 0.78 and 0.58 respectively. On the other hand, the 14 years average NSEs of Q and 1/Q by focusing on 2 drought years (2014~2015) calibration were 0.86 and 0.76 respectively. Thus, we could infer that the SWAT calibration trial by focusing on drought periods data can be a good approach to calibrate both high flow and low flow by controlling the 9 drought affected parameters.

Regional Drought Frequency Analysis with Estimated Monthly Runoff Series in the Nakdong River Basin (낙동강 유역의 유역 유출량 산정에 따른 지역별 가뭄 빈도분석)

  • 김성원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.5
    • /
    • pp.53-67
    • /
    • 1999
  • In this study, regional frequency analysis is used to determine each subbasin drought frequency with watershed runoff which is calculated with Tank Model in Nakdong river basin. L-Monments methd which is almost unbiased and nearly normal distribution is applied to estimate paramers of drought frequency analysis of monthly runoff time series. The duration of '76-77 was the most severe drought year than othe rwater years in this study. To decide drought frequency of each subbasin from the main basin, it is calculated by interpolaing runoff from the frequency-druoght runoff relationship. and the linear regression analysis is accomplished between drought frequency of main basin and that of each subbasin. With the results of linear regression analysis, the drought runoff of each subbasin is calculated corresponing to drought frequency 10,20 and 30 years of Nakdong river basin considering safety standards for the design of impounding facilities. As the results of this study, the proposed methodology and procedure of this study can be applied to water budget analysis considering safety standards for the design of impounding facilities in the large-scale river basin. For this purpose, above all, it is recommanded that expansion of reliable observed runoff data is necessary instead of calculated runoff by rainfall-runoff conceptual model.

  • PDF

A Study on the Vulnerability Assessment for Agricultural Infrastructure using Principal Component Analysis (주성분 분석을 이용한 농업생산기반의 재해 취약성 평가에 관한 연구)

  • Kim, Sung Jae;Kim, Sung Min;Kim, Sang Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.1
    • /
    • pp.31-38
    • /
    • 2013
  • The purpose of this study was to evaluate climate change vulnerability over the agricultural infrastructure in terms of flood and drought using principal component analysis. Vulnerability was assessed using vulnerability resilience index (VRI) which combines climate exposure, sensitivity, and adaptive capacity. Ten flood proxy variables and six drought proxy variables for the vulnerability assessment were selected by opinions of researchers and experts. The statistical data on 16 proxy variables for the local governments (Si, Do) were collected. To identify major variables and to explain the trend in whole data set, principal component analysis (PCA) was conducted. The result of PCA showed that the first 3 principal components explained approximately 83 % and 89 % of the total variance for the flood and drought, respectively. VRI assessment for the local governments based on the PCA results indicated that provinces where having the relatively large cultivation areas were categorized as vulnerable to climate change.

An Irrigation Reliability Assessment of Agricultural Reservoir to Establish Response Plan of Future Climate Change Adaptation (기후변화 대응방안 수립을 위한 농업용 저수지 이수안전도 평가)

  • Kwon, Hyung-Joong;Nam, Won-Ho;Choi, Gyeong-Suk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.2
    • /
    • pp.111-120
    • /
    • 2020
  • This study assessed the reliability of the agricultural water supply based on future climate change scenarios, and suggested plans to improve the reliability in order to promote the adaptability of irrigation water in agricultural reservoirs to climate change. The assessment of agricultural water supply reliability was performed on reservoirs which had a lower water quantity than their design basis and which had recently been subject to drought. In other words, from the irrigation districts of main intake works among the reservoirs managed by the Korea Rural Community Corporation, 1~2 districts in each province-that is, a total of 13 districts -that were recently designated as a district for securing agricultural water (drought prevention district) were selected. Climate change scenarios were applied to the selected districts to analyze their future water supply reliability compared to the current level. All districts selected showed a drought frequency of 4 years or shorter, which demonstrated the need to establish climate change response plans. As plans for responding to climate change, a plan that utilizes supplemental intake works to reduce the area of the irrigation districts of main intake works, and another one that increases the capacity of main intake works were adopted to reanalyze their water supply reliability. When the area of the irrigation districts of main intake works was reduced by about 30~40%, the drought frequency dropped to more than 10 years, securing the reliability of water supply. To secure the reliability by increasing the capacity of main intake works, it was calculated that about 19,000~2,400,000 tons need to be added to each reservoir. In addition, climate change response plans were suggested to improve the reliability of the water supply in each district based on the results of economic analysis.

Reevaluation of Design Frequency of Drought and Water Supply Safety for Agricultural Reservoirs under Changing Climate and Farming Methods in Paddy Field (기상 및 영농방식 변화에 따른 농업용 저수지의 설계한발빈도 및 이수안전도 재평가)

  • Nam, Won-Ho;Kwon, Hyung Joong;Choi, Kyung-Sook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.1
    • /
    • pp.121-131
    • /
    • 2018
  • Past climate change influences multiple environmental aspects, certain of which are specifically related to agricultural water resources such as water supply and demand. Changes on rainfall and hydrologic patterns can increases the occurrence of reservoir water shortage and affect the future availability of agricultural water resources. It is a main concern for sustainable development in agricultural water resources management to evaluate adaptation capability of water supply under the changing climate and farming methods in paddy field. The purpose of this study is an evaluation method of design frequency of drought and water supply safety for agricultural reservoirs to investigate evidence of climate change occurrences at a local scale. Thus, it is a recommended practice in the development of water supply management strategies on reservoir operation under changing climate and farming methods in paddy field.

Evaluation of Semi-Distributed Hydrological Drought using SWSI (Surface Water Supply Index) (SWSI를 이용한 준분포형 수문학적 가뭄 평가)

  • Kwon Hyung-Joong;Kim Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.2
    • /
    • pp.37-43
    • /
    • 2006
  • A hydrological drought index, MSWSI (Modified Surface Water Supply Index) was suggested based on SWSI (Surface Water Supply Index). With the available data of spatially distributed observation station of precipitation, dam storage, stream water level and natural groundwater level, South Korea was divided into 32 regions. This was conducted to represent the calculated index as a spatially distributed information. Monthly MSWSI was evaluated for the period of 1974 and 2001. It is necessary to compare this result with PDSI (Palmer Drought Severity Index) and SPI (Standard Precipitation Index), and check the applicability of the suggested index in our hydrological drought situation.

Comparative Analysis of Design Drought Flow by L-Moment in the Weibull-3 and Wakeby distributions (Weibull -3 및 Wakeby 분포의 L-모멘크법에 의한 설계갈수량 비교분석)

  • 이순혁;박종화;맹승진;류경식;지호근
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.531-536
    • /
    • 1999
  • This study was carried out to derive optimal design drought flows by the Weibull-3 and Wakeby distributions for the annual drought flows series at seven watersheds along Han, Nagdong, Geum, Yeongsan and Seomjin river systems. L-coefficient of variation , L-skewness and L-kurtosis were calculated by the L-moment ratio respectivley. Parameters were estimated by the Methods o fL-Moments with continuous duration. Design drought flows obtained by Methods of L-Moments using Weibull plotting positions formula in the Weibull-3 and Wakeby distributions were compared by the Relative Mean Errors(RME), Relative Absolute Errors (RAE) and Root Mean Square Errors(RMSE). It has shown that design drought flows by the Wakeby distribution using method of L-moments are much closer to those of the observed data in comparison with those obtained by the Weibull-3 distribution using method of L-moments.

  • PDF

AGRICULTURAL DROUGHT RISK ASSESSMENT USING REMOTE SENSING AND GEOGRAPHIC INFORMATION SYSTEM

  • Narongrit, Chada;Yeesoonsang, Seesai
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.991-993
    • /
    • 2003
  • The 4 sets of environmental variables dealing with meteorology, hydrology and physiography were analyzed to generate a spatial drought risk index of Phitsanulok province of Thailand. The analysis of K-mean and discriminant were applied to the set of the selective drought variables for grouping each of spatial variable set into 4 classes. The obtained 4 classes, based on group statistics, were thus recoded in the meaning of no risk, low risk, moderate risk, and high risk. The regression coefficient between recoded classes and a set of the selective environmental variables were then applied as spatial variable weighting on thematic dataset in GIS spatial analysis. The results showed that the weighting score of drought variable was highest in meteorological variable compared to other variables.

  • PDF

Overexpression of OsNAC17 enhances drought tolerance in rice

  • Kim, Tae Hwan;Kim, Ju-Kon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.168-168
    • /
    • 2017
  • Drought conditions during cultivation reduce agricultural production yield less than a theoretical maximum yield under normal condition. Plant specific NAC transcription factors in rice are known to play an essential roles in stress resistance transcriptional regulation. In this study, we report the rice (Oryza sativa L japonica) NAM, AFTF and CUC transcription factor OsNAC17, which is predominantly induced by abiotic stress in leaf, was contribute to the drought tolerance mediated reactive oxygen species (ROS) in transgenic rice plants. Constitutive (PGD1) promoter was introduced to overexpress OsNAC17 and produced the transgenic PDG1:OsNAC17. Overexpression of OsNAC17 throughout the whole plant improved drought resistance phenotype at the vegetative stage. Morphological characteristics such as grain yield, grain filling rate, and total grain weight improved by 22~64% over wild type plants under drought conditions during the reproductive stage. The improved drought tolerance in transgenic rice was involved in reducing stomatal density up to 15% than in wild type plants and in increasing reactive oxygen species-scavenging enzyme. DEG profiling experiment identified 119 up-regulated genes by more than twofold (P<0.01). These genes included UDP-glycosyltransferase family protein, similar to 2-alkenal reductase (NADPH-dependent oxireductase), similar to retinol dehydrogenase 12, Lipoxygenase, and NB-ARC domain containing protein related in cell death. Furthermore, OsNAC17 was act as a transcriptional activator, which has an activation domain in C-terminal region. These result demonstrate that the overexpression of OsNAC17 improve drought tolerance by regulating ROS scavenging enzymes and by reducing stomatal density

  • PDF