• Title/Summary/Keyword: Agricultural big data

Search Result 147, Processing Time 0.027 seconds

Establishment of Marketing Strategy for Online Shopping Mall through Customer Cluster Analysis (소비자 군집분석을 통한 온라인 쇼핑몰 마케팅 전략 수립)

  • Seonghye Kim;Joonsoo Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.47 no.3
    • /
    • pp.163-173
    • /
    • 2024
  • This study aims to establish an online shopping mall marketing strategy based on big data analysis methods. The customer cluster analysis method was utilized to analyze customer purchase patterns and segment them into customer groups with similar characteristics. Data was collected from orders placed over one year in 2023 at 'Jeonbuk Saengsaeng Market', the official online shopping mall for agricultural, fish, and livestock products of Jeonbuk Special Self-Governing Province. K-means clustering was conducted by creating variables such as 'TotalPrice' and 'ElapsedDays' for analysis. The study identified four customer groups, and their main characteristics. Furthermore, regions corresponding to customer groups were analyzed using pivot tables. This facilitated the proposal of a marketing strategy tailored to each group's characteristics and the establishment of an efficient online shopping mall marketing strategy. This study is significant as it departs from the traditional reliance on the intuition of the person in charge to operate a shopping mall, instead establishing a shopping mall marketing strategy through objective and scientific big data analysis. The implementation of the marketing strategy outlined in this study is expected to enhance customer satisfaction and boost sales.

Development of LPWA-Based Farming Environment Data Collection System and Big Data Analysis System (LPWA기반의 임산물 생육환경 수집 및 빅데이터 분석 시스템 개발)

  • Kim, Yu-Bin;Oh, Yeon-Jae;Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.4
    • /
    • pp.695-702
    • /
    • 2020
  • Recently, as research on smart farms has been actively conducted, indoor environment control, such as a green house, has reached a high level. However, In the field of forestry where cultivation is carried out in outdoor, the use of ICT is still insufficient. In this paper, we propose LPWA-based forest growth environment collection and big data analysis system using ICT technology. The proposed system collects and transmits the field cultivation environment data to the server using small solar power generation and LPWA technology based on the oneM2M architecture. The transmitted data is constructed as big data on the server and utilizes it to predict the production and quality of forest products. The proposed system is expected to contribute to the production of low-cost, high-quality crops through the fusion of renewable energy and smart farms. In addition, it can be applied to other industrial fields that utilize the oneM2M architecture and monitoring the growth environment of agricultural crops in the field.

Analysis of Agenda-setting Changes in Alpine Agricultural of Uljin-gun Using Text-Mining - Focusing on the Keywords of Mass-media, Blog·Cafe - (텍스트마이닝 기법을 활용한 울진군 금강송 산지농업 의제설정 변화 - 매스미디어와 블로그·카페 키워드를 중심으로 -)

  • Do, Jee-Yoon;Jeong, Myeong-Cheol
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.24 no.3
    • /
    • pp.47-57
    • /
    • 2022
  • This study attempted to grasp the status and perception of Uljin Geumgangsong by grasping mass media issues and user perception using big data, and to present basic data when constructing monitoring using user perception by examining the establishment relationship of agenda setting from a time-series perspective. The results of collecting and analyzing text data that can identify mass media and visitor awareness are as follows. First, both mass media and visitor keywords were related to the importance of the value and meaning of Uljin Geumgangsong. Second, in the case of the connection network, Geumgang Pine Agriculture was centered, but in the case of difference in perception between mass media and visitors, such results were derived due to the object of interest. Third, in the case of the connection relationship structure, the connection strength was strong because there were many overlapping contents of mass media. Fourth, as a result of the centrality analysis, both mass media and visitor-aware keywords were positively recognized as spaces created and maintained through institutional support, and objective perception could be grasped by finding hidden keywords. Fifth, as a result of time series analysis, it was possible to grasp the flow through the issue keywords that appeared by period, and unlike the past, it was recognized as a place for tourism and travel. Finally, as a result of examining whether the agenda setting is consistent, there is a mass media influence, so it is thought that more diverse and more information and publicity are needed by utilizing it.

A Missing Value Replacement Method for Agricultural Meteorological Data Using Bayesian Spatio-Temporal Model (농업기상 결측치 보정을 위한 통계적 시공간모형)

  • Park, Dain;Yoon, Sanghoo
    • Journal of Environmental Science International
    • /
    • v.27 no.7
    • /
    • pp.499-507
    • /
    • 2018
  • Agricultural meteorological information is an important resource that affects farmers' income, food security, and agricultural conditions. Thus, such data are used in various fields that are responsible for planning, enforcing, and evaluating agricultural policies. The meteorological information obtained from automatic weather observation systems operated by rural development agencies contains missing values owing to temporary mechanical or communication deficiencies. It is known that missing values lead to reduction in the reliability and validity of the model. In this study, the hierarchical Bayesian spatio-temporal model suggests replacements for missing values because the meteorological information includes spatio-temporal correlation. The prior distribution is very important in the Bayesian approach. However, we found a problem where the spatial decay parameter was not converged through the trace plot. A suitable spatial decay parameter, estimated on the bias of root-mean-square error (RMSE), which was determined to be the difference between the predicted and observed values. The latitude, longitude, and altitude were considered as covariates. The estimated spatial decay parameters were 0.041 and 0.039, for the spatio-temporal model with latitude and longitude and for latitude, longitude, and altitude, respectively. The posterior distributions were stable after the spatial decay parameter was fixed. root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and bias were calculated for model validation. Finally, the missing values were generated using the independent Gaussian process model.

Analysis of Social Network Service Data to Estimate Tourist Interests in Green Tour Activities

  • Rah, HyungChul;Park, Sungho;Kim, Miok;Cho, Youngbeen;Yoo, Kwan-Hee
    • International Journal of Contents
    • /
    • v.14 no.3
    • /
    • pp.27-31
    • /
    • 2018
  • Social network service (SNS) data related to green tourism were used to estimate preferred tour sites and users' interests. Keywords related with green tour activities were employed to search the SNS data. SNS data were collected from Korean blogs such as Naver and Daum from June $1^{st}$ to August $31^{st}$ between 2015 and 2017 using text-mining solution. During the study period, seven hundred and five posts were analyzed. Associated words that frequently co-occurred with keywords were classified into different categories depending on the nature of associated words. Associated words included swimming pools and camping sites (location); experience and swimming pools (attribute); and water play and culture (culture/leisure). Our data suggest that SNS users with experience of green tourism in Korea exhibited interest in green tourism with swimming pools, camping sites, experience, water play and/or culture rather than particular popular sites. Based on the findings, it is recommended that preferred facilities such as swimming pools should be provided at green tourism sites to meet the users' needs and to facilitate green tourism.

Production of Agrometeorological Information in Onion Fields using Geostatistical Models (지구 통계 모형을 이용한 양파 재배지 농업기상정보 생성 방법)

  • Im, Jieun;Yoon, Sanghoo
    • Journal of Environmental Science International
    • /
    • v.27 no.7
    • /
    • pp.509-518
    • /
    • 2018
  • Weather is the most influential factor for crop cultivation. Weather information for cultivated areas is necessary for growth and production forecasting of agricultural crops. However, there are limitations in the meteorological observations in cultivated areas because weather equipment is not installed. This study tested methods of predicting the daily mean temperature in onion fields using geostatistical models. Three models were considered: inverse distance weight method, generalized additive model, and Bayesian spatial linear model. Data were collected from the AWS (automatic weather system), ASOS (automated synoptic observing system), and an agricultural weather station between 2013 and 2016. To evaluate the prediction performance, data from AWS and ASOS were used as the modeling data, and data from the agricultural weather station were used as the validation data. It was found that the Bayesian spatial linear regression performed better than other models. Consequently, high-resolution maps of the daily mean temperature of Jeonnam were generated using all observed weather information.

Development of online drone control management information platform (온라인 드론방제 관리 정보 플랫폼 개발)

  • Lim, Jin-Taek;Lee, Sang-Beom
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.4
    • /
    • pp.193-198
    • /
    • 2021
  • Recently, interests in the 4th industry have increased the level of demand for pest control by farmers in the field of rice farming, and the interests and use of agricultural pest control drones. Therefore, the diversification of agricultural control drones that spray high-concentration pesticides and the increase of agricultural exterminators due to the acquisition of national drone certifications are rapidly developing the agricultural sector in the drone industry. In addition, as detailed projects, an effective platform is required to construct large-scale big data due to pesticide management, exterminator management, precise spraying, pest control work volume classification, settlement, soil management, prediction and monitoring of damages by pests, etc. and to process the data. However, studies in South Korea and other countries on development of models and programs to integrate and process the big data such as data analysis algorithms, image analysis algorithms, growth management algorithms, AI algorithms, etc. are insufficient. This paper proposed an online drone pest control management information platform to meet the needs of managers and farmers in the agricultural field and to realize precise AI pest control based on the agricultural drone pest control processor using drones and presented foundation for development of a comprehensive management system through empirical experiments.

A Study on Environmental Factor Recommendation Technology based on Deep Learning for Digital Agriculture (디지털 농업을 위한 딥러닝 기반의 환경 인자 추천 기술 연구)

  • Han-Jin Cho
    • Smart Media Journal
    • /
    • v.12 no.5
    • /
    • pp.65-72
    • /
    • 2023
  • Smart Farm means creating new value in various fields related to agriculture, including not only agricultural production but also distribution and consumption through the convergence of agriculture and ICT. In Korea, a rental smart farm is created to spread smart agriculture, and a smart farm big data platform is established to promote data collection and utilization. It is pushing for digital transformation of agricultural products distribution from production areas to consumption areas, such as expanding smart APCs, operating online exchanges, and digitizing wholesale market transaction information. As such, although agricultural data is generated according to characteristics from various sources, it is only used as a service using statistics and standardized data. This is because there are limitations due to distributed data collection from agriculture to production, distribution, and consumption, and it is difficult to collect and process various types of data from various sources. Therefore, in this paper, we analyze the current state of domestic agricultural data collection and sharing for digital agriculture and propose a data collection and linkage method for artificial intelligence services. And, using the proposed data, we propose a deep learning-based environmental factor recommendation method.

Utilization Evaluation of Numerical forest Soil Map to Predict the Weather in Upland Crops (밭작물 농업기상을 위한 수치형 산림입지토양도 활용성 평가)

  • Kang, Dayoung;Hwang, Yeongeun;Yoon, Sanghoo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.1
    • /
    • pp.34-45
    • /
    • 2021
  • Weather is one of the important factors in the agricultural industry as it affects the price, production, and quality of crops. Upland crops are directly exposed to the natural environment because they are mainly grown in mountainous areas. Therefore, it is necessary to provide accurate weather for upland crops. This study examined the effectiveness of 12 forest soil factors to interpolate the weather in mountainous areas. The daily temperature and precipitation were collected by the Korea Meteorological Administration between January 2009 and December 2018. The Generalized Additive Model (GAM), Kriging, and Random Forest (RF) were considered to interpolate. For evaluating the interpolation performance, automatic weather stations were used as training data and automated synoptic observing systems were used as test data for cross-validation. Unfortunately, the forest soil factors were not significant to interpolate the weather in the mountainous areas. GAM with only geography aspects showed that it can interpolate well in terms of root mean squared error and mean absolute error. The significance of the factors was tested at the 5% significance level in GAM, and the climate zone code (CLZN_CD) and soil water code B (SIBFLR_LAR) were identified as relatively important factors. It has shown that CLZN_CD could help to interpolate the daily average and minimum daily temperature for upland crops.

A Trend Analysis of Agricultural and Food Marketing Studies Using Text-mining Technique (텍스트마이닝 기법을 이용한 국내 농식품유통 연구동향 분석)

  • Yoo, Li-Na;Hwang, Su-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.215-226
    • /
    • 2017
  • This study analyzed trends in agricultural and food marketing studies from 1984 to 2015 using text-mining techniques. Text-mining is a part of Big-data analysis, which is an effective tool to objectively process large amounts of information based on categorization and trend analysis. In the present study, frequency analysis, topic analysis and association rules were conducted. Titles of agricultural and food marketing studies in four journals and reports were used for placing the analysis. The results showed that 1,126 total theses related to agricultural and food marketing could be categorized into six subjects. There were significant changes in research trends before and after the 2000s. While research before 2000s focused on farm and wholesale level marketing, research after the 2000s mainly covered consumption, (processed)food, exports and imports. Local food and school meals are new subjects that are increasingly being studied. Issues regarding agricultural supply and demand were the only subjects investigated in policy research studies. Interest in agricultural supply and demand was lost after the 2000s. A number of studies after the 2010s analyzed consumption, primarily consumption trends and consumer behavior.