• 제목/요약/키워드: Agricultural Drone

Search Result 79, Processing Time 0.839 seconds

Estimation of Paddy CH4 Emissions through Drone-Image-Based Identification of Paddy Rice Straw Application & Winter Crop Cultivation (Drone 영상을 이용한 논 필지 볏짚 환원-동계 재배 확인 및 CH4 배출량 산정)

  • Jang, Seongju;Park, Jinseok;Hong, Rokgi;Hong, Joopyo;Kwon, Chaelyn;Song, Inhong
    • Journal of Korean Society of Rural Planning
    • /
    • v.27 no.3
    • /
    • pp.21-33
    • /
    • 2021
  • Rice straw management and winter crop cultivation are crucial components for the accurate estimation of paddy methane emissions. Field-based extensive investigation of paddy organic matter management requires enormous efforts however it becomes more feasible as drone technology advances. The objectives of this study were to identify paddy fields of straw application and winter crop cultivation using drone images and to apply for the estimation of yearly methane emission. Total 35 sites of over 150ha in area were selected nationwide as the study areas. Drone images of the study sites were taken twice during summer and winter in 2018 through 2019: Summer images were used to identify paddy cultivation areas, while winter images for straw and winter crop practices. Drone-image-based identification results were used to estimate paddy methane emission and compared with conventional method. As the result, mean areas for paddy, straw application and winter crop cultivation were 118.9ha, 12.0ha, and 11.3ha, respectively. Overall rice straw application rate were greater in Gyeonggi-do(20%) and Chungcheongnam-do(12%), while winter crop cultivation was greatest in Gyeongsangnam-do(30%) and Jeolla-do(27%). Yearly mean methane emission was estimated to be 226.2kg CH4/ha/yr in this study and about 32% less when compared to 331.8kg CH4/ha/yr estimated with the conventional method. This was primarily because of the lower rice straw application rate observed in this study, which was less than quarter the rate of 55.62% used for the conventional method. This indicates the necessity to use more accurate statistics of rice straw application as well as winter crop practices into paddy methane emission estimation. Thus it is recommended to further study to link drone technology with satellite image analysis in order to identify organic management practices at a paddy field level over extensive agricultural area.

Study on Three-Dimensional Analysis of Agricultural Plants and Drone-Spray Pesticide (농작물을 위한 드론 분무 농약 살포의 3차원 분석에 관한 연구)

  • Moon, In Sik;Kown, Hyun Jin;Kim, Mi Hyeon;Chang, Se Myong;Ra, In Ho;Kim, Heung Tae
    • Smart Media Journal
    • /
    • v.9 no.4
    • /
    • pp.176-186
    • /
    • 2020
  • The size and shape of crops are diverse, and the growing environment is also different. Therefore, when one uses a drone to spray pesticides, the characteristics of each crop must be considered, and flight conditions such as the flight height and forwarding velocity of the drone should be changed. The droplet flow of pesticides is affected by various flight conditions, and a large change occurs in the sprayed area. As a result, an uneven distribution of liquid may be formed at the wake, and the transport efficiency will be decreased as well as there would be a risk of toxic scatter. Therefore, this paper analyzes the degree of distribution of pesticides to the crops through numerical analysis when pesticide is sprayed onto the selected three crops with different characteristics by using agricultural drones with different flight conditions. On the purpose of establishing a guideline for spraying pesticides using a drone in accordance with the characteristics of crops, this paper compares the amount of pesticides distributed in the crops at the wake of nozzle flow using the figure of merit, and the sum of transported liquid rate divided by the root mean square of the probability density function.

A Study on Measurement System for Water Volume of the Reservoir using Drone and Sensors (드론과 센서를 이용한 저수지 수량 측정 시스템에 관한 연구)

  • Kim, Hyeong-gyun;Hwang, Jun;Bang, Jong-ho
    • Journal of Internet Computing and Services
    • /
    • v.20 no.6
    • /
    • pp.47-54
    • /
    • 2019
  • Social dredging of various river facilities, such as dams and agricultural reservoirs currently being constructed, should be done to ensure stable reservoirs. However, it is difficult to find a system that tells the exact amount of water in real-time in a reservoir or dam. These measurements require an automated system to collect and analyze highly accurate data in real time. In this study, we propose a method to measure the amount of water and soil of reservoir in real time through multi-division volume calculation using a drone, and this method can detect sediment conditions in real time and determine the exact timing and scale of dredging.

Remote Honey Bee Breeding Centre: A Case Study of Heligoland Island in Germany

  • Meyer-Rochow, V.B.;Jung, Chuleui
    • Journal of Apiculture
    • /
    • v.34 no.4
    • /
    • pp.285-293
    • /
    • 2019
  • The honey bee queen shows extreme polyandry and controlling the mating partners can only be possible either by artificial insemination or having remote isolated mating locations. Here we report on the German North Sea island of Heligoland. Because of its location 60 km from the mainland, the lack of a local population of honey bees, its size of just 1.4 ㎢ and suitable weather conditions during the months of May to July, it is considered an ideal location for controlled inseminations of high-quality virgin queen bees with drones deemed genetically superior to others. Methods how to rear virgin queen bees are described and information is provided on the numbers of queen bees, their supporting workers and drone bees that are taken to the island in the mating season. The bee most commonly involved in the Heligoland mating trials has become Apis mellifera carnica strain "Baltica". In one summer, for example, 80 virgin queens (belonging to beekeepers from nine different locations in northern Germany) each with about 600 worker bees plus two drone populations of around 2,000 drones were taken by ship to Heligoland. On their return to the mainland no later than 3.5 weeks after the mating exercise, the beekeepers could register a mating success rate of 80%. This information can help operation management of the new remote mating centre of Weedo Island, Jeonbuk in Korea, which is currently under construction.

Pupal Drone Extracts for Anti-wrinkle and Skin-lightening Materials (수벌번데기 추출물의 주름개선 및 미백효과 구명)

  • Kim, Jung-Eun;Kim, Do-Ik;Koo, Hui-Yeon;Kim, Hyeon-Jin;Kim, Seong-Yeon;Lee, Yoo-Beom;Moon, Jae-Hak;Choi, Yong-Soo
    • Journal of Life Science
    • /
    • v.30 no.5
    • /
    • pp.428-433
    • /
    • 2020
  • In this study, we created pupal stage extracts of Apis mellifera L. drones for use in cosmetic materials. The effect of the drone pupae extract (DPE) on HDF cells was assessed for analysis of anti-wrinkle activity by collagen or collagenase gene expression, and the skin-lightening effect was studied by in vitro tyrosinase inhibition and B16F10 melanoma assay; the two cells were found to be non-cellular when the concentration of DPE was 100 ㎍/ml. Albutin concentration (positive control) in the whitening test was set at a capacity of 100 ug/ml and m-melanocyte stimulating hormone (α-MSH). A melanin-producing induction material was set at a concentration of 100 nM, and the expression of collagen type I and MMP1 collagenase was measured using HDF cells. MMP1 expression was seen to reduce in a concentration-dependent manner in treatment with DPE. Inhibiting melanin generation with B16F12 cells indicated a tendency to decrease in the DPE treatment group. Both L-Tyrosine and L-DOPA as DPE were used in an in vitro tyrosinase induction test to demonstrate the effects of tyrosinase suppression on concentrations. The higher the concentration of DPE, the greater the wrinkle reduction and whitening effect. In conclusion, it was found that DPE is an effective smoothing and whitening material by increasing collagen generation and inhibiting collagenase expression and reducing melanin production.

Power System Optimization for Electric Hybrid Unmanned Drone (전동 하이브리드 무인 드론의 동력 계통 최적화)

  • Park, Jung-Hwan;Lyu, Hee-Gyeong;Lee, Hak-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.4
    • /
    • pp.300-308
    • /
    • 2019
  • For drones to be used for industrial or agricultural applications, it is necessary to increase the payload and endurance. Currently, the payload and endurance are limited by the battery technology for electric powered drones. In addition, charging or replacing the batteries may not be a practical solution at the field that requires near continuous operation. In this paper, a procedure to optimize the power system of an electric hybrid drone that consists of an internal combustion engine, a generator, a battery, and electric motors is presented. The example drone for crop dusting is sized for easy transportation with a maximum takeoff weight of 200 kg. The two main rotors that are mechanically connected to the internal combustion engine provides most of the lift. The drone is controled by four electric motors that are driven by the generator. By analyzing the flow of the energy, a methodology to select the optimum propeller and motor among the commercially available models is described. Then, a procedure of finding the optimum operational condition along with the proper gear reduction ratios for the internal combustion engine based on the test data is presented.

Preparation and Application of Cultivation Management Map Using Drone - Focused on Spring Chinese Cabbage - (드론 기반의 재배관리 지도 제작 및 활용방안 - 봄배추를 대상으로 -)

  • Na, Sang-il;Lee, Yun-ho;Ryu, Jae-Hyun;Lee, Dong-ho;Shin, Hyoung-sub;Kim, Seo-jun;Cho, Jaeil;Park, Jong-hwa;Ahn, Ho-yong;So, Kyu-ho;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.637-648
    • /
    • 2021
  • In order to support the establishment of a farming plan, it is important to preemptively evaluate crop changes and to provide precise information. Therefore, it is necessary to provide customized information suitable for decision-making by farming stage through scientific and continuous monitoring using drones. This study was carried out to support the establishment of the farming plan for ground vegetable. The cultivation management map of each information was obtained from preliminary study. Three cultivation management maps include 'field emergence map', 'stress map' and 'productivity map' reflected spatial variation in the plantation by providing information in units of plants based on 3-dimensions. Application fields of the cultivation management map can be summarized as follows: detect miss-planted, replanting decision, fertilization, weeding, pest control, irrigation schedule, market quality evaluation, harvest schedule, etc.

Analysis of Nutritional Compounds and Antioxidant Effect of Freeze-Dried powder of the Honey Bee (Apis mellifera L.) Drone (Pupal stage) (서양종 꿀벌(Apis mellifera L.) 수벌번데기 동결건조 분말의 영양학적 성분 및 항산화 효과)

  • Kim, Jung-Eun;Kim, Do-Ik;Koo, Hui-Yeon;Kim, Hyeon-Jin;Kim, Seong-Yeon;Lee, Yoo-Beom;Kim, Ji-Soo;Kim, Ho-Hyuk;Moon, Jae-Hak;Choi, Yong-Soo
    • Korean journal of applied entomology
    • /
    • v.59 no.3
    • /
    • pp.265-275
    • /
    • 2020
  • In this study, we analyzed the nutritional ingredients of drone pupae (16th to 20th instar old) to evaluate the value of bee products and provide basic data for product diversification, and the extracts prepared using these pupae were tested for physiological activity. According to the analysis of the general ingredients of the freeze-dried powder of these bee pupae, the moisture, crude protein, crude fat, and crude ash was 1.69 ± 0.07%, 48.52 ± 0.20%, 23.41 ± 0.14%, and 4.05 ± 0.02%, respectively. Vitamin C and vitamin E were 14.92 ± 0.52 mg/100 g and 6.06 ± 0.11 mg α-TE/100 g, respectively. Regarding minerals, the highest content of K (1349.13 ± 34.57 mg/100 g) and P (1323.55 ± 43.85 mg/100 g) was observed and Ca and Fe were 55.43 ± 1.51 mg/100 g and 5.49 ± 0.19 mg/100 g, respectively. The fatty acids of the water extracted freeze-dried pupae powder accounted for approximately 59.62 of saturated fatty acids and 40.38 of unsaturated fatty acids, and high-quality fatty acids such as palmitic acid (C16:0) was 35.49 ± 0.08 and oleic acid (C18:1, n-9) was 35.91 ± 0.22 (g/100 g total fatty acids). The total amino acid content was 38.99 ± 2.63 g/100 g and the free amino acid was a total of 5129.04 mg/100 g, of which 1257.68 mg/100 g was proline and 759.12 mg/100 g glutamic acid. The DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity of the drone pupae extract showed values of 0.8 for distilled water extract, 3.2 for 50% EtOH extract, 6.4 for 70% EtOH extract, and approximately 90% for 32 ㎍/mL for 100% EtOH extract. These results suggest that the main compound contributing to the antioxidant activity is a polar compound, and it is highly likely to be a low-molecular protein or a free amino acid. In conclusion, the honey bee drone pupa is excellent as a food resource and can be utilized as a new functional material for food and functional food.

A Study on Drone Nozzle Design for Greenhouse Shading (온실차광을 위한 드론 전용노즐 설계에 관한 연구)

  • Ungjin Oh;Jin-Taek Lim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.4
    • /
    • pp.249-254
    • /
    • 2023
  • Recently, the distribution of drones is being activated by saving farmers' working time and protecting them from harmful human bodies from pesticides due to the mission of spraying pesticides using drones. It is possible to compensate for various shortcomings derived from the existing pesticide spraying method, wide-area control and helicopter control. Recently, the smart farm expansion policy has actively used it to generate profits for farmers by increasing harvests by monitoring growth information of various crops based on IoT in real time and collecting big data on key variables, and related drone industry technologies are also being developed. In this study, drones were applied to the work of shading greenhouses to secure diversity in agricultural application fields, and basic research on the greenhouse environment was conducted to materialize the technology related to shading. In order to provide high-quality light in consideration of the internal and external environment of the green house, basic research was conducted to enable light-shielding missions using drones through nozzle design for uniform spraying of nozzles of drones, light-transmitting rate analysis of green houses, and light-shielding agent application experiments.

A Study on Design of High strength Cylinder Block about Common Rail Direct Injection Diesel Engine for Small Tractor (소형 트랙터용 전자제어 직접 분사식 디젤 엔진 고강도 실린더 블록의 설계에 관한 연구)

  • Seock-Ju Nam;Sung-Ho Park;Gue-Tae Kim;Gwi-Nam Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_2
    • /
    • pp.649-656
    • /
    • 2023
  • Recently, global warming has become severe, and regulation is established for carbon savings each field. its regulation is applied to various fields using IC engine such as automobile, ship, agricultural machine. Therefore engine block applied Common Rail Direct Injection(CRDI) technology, that carry out thermal-structure analysis to examine design. The thermal load about 900℃ by explosion was applied in cylinder. And pressure about 9 MPa(90 Bar) was applied to structure analysis. As a result, it was the highest at 185.99℃ at the top of cylinder. Static-structure analysis applied thermal load, that was shown maximum equivalent stress at 142.59 Mpa and Maximum principal stress 145.03 MPa, Minimum principal stress -149 MPa. When compare analysis results to material property, it design is safety structurally.