• Title/Summary/Keyword: Agonist muscle

Search Result 129, Processing Time 0.022 seconds

Cellular Pathways in Agonist-induced Gallbladder Muscle Contraction in the Cat (고양이의 담낭근 수축에 있어서 세포내 기전)

  • Rhim, Byung-Yong;Kim, Chi-Dae;Kim, Dong-Heon;Biancani, Piero;Behar, Jose
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.1
    • /
    • pp.67-74
    • /
    • 1996
  • Cholecystokinin octapeptide (CCK-8), acetylcholine (ACh) and KCl caused a dose dependent contraction in muscle cells enzymatically digested from cat gallbladder. Maximal contraction was obtained at concentration of $10^{-9}M$ for CCK-8, $10^{-5}M$ for ACh and 20mM for KCl. CCK-8 induced contraction was unaffected in calcium free physiological salt solution (PSS) and was completely blocked by strontium substitution for calcium (p<0.001). In contrast, KCl evoked contraction was blocked in calcium free PSS (p<0.01) but was unaffected by strontium replacement of calcium. The contraction elicited by ACh was only slightly reduced in calcium free PSS (p<0.05) and was unaltered by strontium. Muscle cells permeabilized with saponin contracted in response to inositol 1,4.5-trisphosphate $(IP_3)$ and CCK-8. The contraction was blocked by the calmodulin antagonist CGS 9343B (p<0.001), whereas heparin completely blocked the effect of $IP_3$ (p<0.001). The protein kinase C (PKC) antagonist H7 had no effect on either agonist. We conclude that CCK-8 induced gallbladder muscle contraction is mediated by $IP_3$ dependent intracellular calcium release from intracellular stores and a calmodulin dependent pathway; ACh may utilize both extracellular and intracellular calcium. KCl causes muscle contracrion through influx of extracellular calcium and a calmodulin independent machanism.

  • PDF

Regulation of $Ba^{2+}$-Induced Contraction of Murine Ureteral Smooth Muscle

  • Kim, Young-Chul;Lee, Moo-Yeol;Kim, Wun-Jae;Myung, Soon-Chul;Choi, Woong;Kim, Chan-Hyung;Xu, Wen-Xie;Kim, Seung-Ryul;Lee, Sang-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.5
    • /
    • pp.207-213
    • /
    • 2007
  • This study was designed to characterize ureteral smooth muscle motility and also to study the effect of forskolin(FSK) and isoproterenol(ISO) on smooth muscle contractility in murine ureter. High $K^+$(50 mM) produced tonic contraction by $0.17{\pm}0.06mN$(n=19). Neuropeptide and neurotransmitters such as serotonin($5{\mu}M$), histamine($20{\mu}M$), and carbarchol(CCh, $10{\sim}50{\mu}M$) did not produce significant contraction. However, CCh($50{\mu}M$) produced slow phasic contraction in the presence of 25 mM $K^+$. Cyclopiazonic acid(CPA, $10{\mu}M$), SR $Ca^{2+}$-ATPase blocker, produced tonic contraction(0.07 mN). Meanwhile, inhibition of mitochondria by protonophore carbnylcyanide m-chlorophenylhydrazone(CCCP) also produced weak tonic contraction(0.01 mN). The possible involvement of $K^+$ channels was also pursued. Tetraethyl ammonium chloride(TEA, 10 mM), glibenclamide($10{\mu}M$) and quinidine($20{\mu}M$) which are known to block $Ca^{2+}$-activated $K^+$ channels($K_{Ca}$ channel), ATP-sensitive $K^+$ channels($K_{ATP}$) and nonselective $K^+$ channel, respectively, did not elicit any significant effect. However, $Ba^{2+}$($1{\sim}2mM$), blocker of inward rectifier $K^+$ channels($K_{IR}$ channel), produced phasic contraction in a reversible manner, which was blocked by $1{\mu}M$ nicardipine, a blocker of dehydropyridine-sensitive voltage-dependent L-type $Ca^{2+}$ channels($VDCC_L$) in smooth muscle membrane. This $Ba^{2+}$-induced phasic contraction was significantly enhanced by $10{\mu}M$ cyclopiazonic acid(CPA) in the frequency and amplitude. Finally, regulation of $Ba^{2+}$-induced contraction was studied by FSK and ISO which are known as adenylyl cyclase activator and $\beta$-adrenergic receptor agonist, respectively. These drugs significantly suppressed the frequency and amplitude of $Ba^{2+}$-induced contraction(p<0.05). These results suggest that $Ba^{2+}$ produces phasic contraction in murine ureteral smooth muscle which can be regulated by FSK and $\beta$-adrenergic stimulation.

Effects of potato byproduct on growth performance, blood metabolites, and carcass characteristics of Hanwoo steers

  • Kang, Dong Hun;Ki, Kwang Seok;Jang, Sun Sik;Yang, Seung Hak;Lee, Eun Mi;Park, Bo Hye;Kwon, Eung Gi;Chung, Ki Yong
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.4
    • /
    • pp.574-585
    • /
    • 2017
  • This study was conducted to investigate effects of a potato byproduct on growth performance, blood metabolites, and carcass characteristics of Hanwoo steers. The palm oil coated potato byproduct was supplemented to the diet of Hanwoo steers to estimate the effect on growth performance, blood metabolites, and carcass characteristics during the late fattening period. Thirteen steers with initial body weight of control ($676.8{\pm}31.7kg$), treatment 1 ($671.8{\pm}46.2kg$) and treatment 2 ($672.8{\pm}31.1kg$) were used for 60 days, respectively. Average daily gain of steers in treatment 2 and control was greater than that in treastment 1 (p > 0.05). All steers in treatment 2 had a grade quality grading system than B in meat quantity and had a meat quality higher than the $1^{st}$ grade. According to the physicochemical analysis of longissimus muscle, treatment 2 had high brightness resulting from high meat quality (p > 0.05), and a decrease in redness and yellowness is seen as a dilution effect due to muscle hypertrophy (p > 0.05). The fatty acid composition showed low levels of linoleic acid (p = 0.039) and arachidonic acid (p = 0.008) in treatment 2. This resulted in lower polyunsaturated fatty acid (PUFA) levels (p = 0.034). On the other hand, high levels of oleic acid resulted in high levels of MUFA (p > 0.05). These results indicate that potato byproduct had similar effects with ${\beta}_2-adrenergic$ agonist (${\beta}_2-AA$). And there was no negative effect on the intramuscular fat. In conclusion, palm oil coated potato byproduct could be potentially used as an alternative growth enhancer.

Binding Studies of Cardiovascular Drug on ${\beta}$ Adrenoceptors in Rat Left Ventricle using $(-)-[^3H]-DHA$, $Non-{\beta}_1/{\beta}_2-selective$ Radioligand (${\beta}_1/{\beta}_2$ 비선택적 Radioligand $(-)-[^3H]-DHA$를 사용한 Rat 좌심실 ${\beta}-adrenoceptor$에 대한 심장순환계 약물의 Binding)

  • Kwon, Kwang-Il;Lee, Sun-Kyung;Yoo, Sung-Eun
    • The Korean Journal of Pharmacology
    • /
    • v.27 no.2
    • /
    • pp.119-123
    • /
    • 1991
  • ${\beta}-Adrenoceptor$ binding study of ${\beta}-agonist$ ((-)NE), ${\beta}-antagonists$ $(({\pm})\;propranolol,\;labetalol)$ and PDE inhibitors (imazodan, KR-30045, KR-30075 etc.) was performed using $(-)-[^3H]-DHA$, as a $non-{\beta}_1/{\beta}_2$ selective radioligand. In saturation studies, $K_d$ and $B_{max}$ of $(-)-[^3H]-DHA$ to ${\beta}-adrenoceptors$ in rat left ventricle in which both ${\beta}_1$ and ${\beta}_2$ receptors coexist were determined to be $1.5{\pm}0.43\;nM$ and $22.0{\pm}0.9\;fmol/mg$ protein, respectively. $({\pm})Propranolol$, labetalol and (-)NE competed for $(-)-[^3H]-DHA$ binding sites in an essentialy monophasic manner with $Ki=17.0{\pm}0.40\;nM,\;57.3{\pm}1.30\;nM,\;and\;1.57{\pm}0.95\;{\mu}M$, respectively. All of PDE inhibitors inhibited the $(-)-[^3H]-DHA$ binding by only below 10% even at the high concentration of $10^{-3}M$. The present results suggest that propranolol, labetalol and NE are $non-{\beta}_1/{\beta}_2$ selective antagonists and agonist, respectively. Additionally, this study shows that imazodan and new synthesized PDE inhibitors may hardly have the affinities to ${\beta}-adrenoceptors$ in cardiac muscle.

  • PDF

Effects of Tachykinins on Intestinal Smooth Muscle of Nile tilapia(Oreochromis niloticus) and Israel carp(Cyprinus carpio) (나일틸라피아(Oreochromis niloticus)와 이스라엘잉어(Cyprinus carpio)의 장관 평활근의 수축활성에 미치는 Tachykinin류의 영향)

  • Kim, Eun-Hee;Seo, Jung-Soo;Huh, Min-Do;Park, Nam-Gyu;Lee, Hyung-Ho;Chung, Joon-Ki
    • Journal of fish pathology
    • /
    • v.14 no.1
    • /
    • pp.46-53
    • /
    • 2001
  • The present study was undertaken to investigate and compare the effect and mode of action of tachykinins on isolated strip preparations of the intestinal smooth muscle from the nile tilapia, Oreochromis niloticus and the Israel carp, Cyprinus carpio. Both of neurokinin 1(NK-1) receptor agonist, substance P(SP) and neurokinin 2(NK-2) receptor agonist, neurokinin A(NKA) caused concentration-dependent contractions of intestinal smooth muscle in the nile tilapia and the israel carp. The efficiency and potency of these agonists varied between two fish species. In the nile tilapia intestine, the efficiency and potency of SP were greater than those of NKA. However, the efficiency and potency of SP were similar to those of NKA. In the nile tilapia intestine and the israel carp intestine, the contractile responses of SP and NKA were noncompetitively antagonized by NK-1 receptor antagonist, L-732, 138 but unaffected by NK-2 receptor antagonist, MDL 29913. In addition, SP-induced contractions in the both of preparation were significantly inhibited by muscarinic antagonist, atropine($5{\times}10^{-7}$M) and ganglionic inhibitor, tetrodotoxin($2{\times}10^{-7}$M) but NKA-induced contractions were unaffected by those. These results indicate that two tachykinin agonists, SP and NKA predominately modulate the mechanical activity of isolated preparation from the nile tilapia and the israle carp directly through the activation of NK-1 receptor on the intestinal smooth muscle cells, but in the case of SP action, the indirect action through activation of cholinergic nerve terminals seems to be also implicated.

  • PDF

Inhibitory Effects of ${\gamma}$-Aminobutyric Acid on the Contractility of Isolated Rat Vas Deferens (흰쥐의 적출 정관 수축성에 대한 ${\gamma}$-Aminobutyric Acid의 억제작용)

  • Ahn, Ki-Young;Kwon, Oh-Cheol;Ha, Jeoung-Hee;Lee, Kwang-Youn;Kim, Won-Joon
    • Journal of Yeungnam Medical Science
    • /
    • v.9 no.2
    • /
    • pp.382-395
    • /
    • 1992
  • GABA is an inhibitory neurotransmitter in central nervous system and produce sedative, antianxiety and muscle reaxing effects via $GABA_A$ receptor or $GABA_B$ receptor. Recently it is known that GABA is widely distributed throughout peripheral organs and may playa physiological role in certain organ. The vas deferens is innervated by species-difference. These study, therefore, was performed to investigate the mode and the mechanism of action of GABA on the norepiniphrine-, ATP- and electric stimulation-induced contraction of vas deferens of rat. Sprague-Dawley rats were sacrificed by cervical dislocation. The smooth muscle strips were isolated from the prostastic portion and were mounted in the isolated muscle bath. PSS in the bath was aerated with 95/5%-$O_2/CO_2$ at $33^{\circ}C$. Muscle tensions were measured by isometric tension transducer and were recorded by biological recording system. 1. GABA, muscimol, a $GAB_A$ agonist, and baclofen, a $GABA_B$ agonist inhibited the electric field stimulation(EFS, 0.2Hz, 1mSec, 80 V, monophasic square wave)-induced contraction with a rank order of potency of GABA greater than baclofen greater than muscimol. 2. The inhibitory effect of GABA was antagonized by delta aminovaleric acid(DAVA), a $GABA_B$ antagonist, but not by bicuculline, a $GABA_A$ mtagonist. 3. The inhibitory effect of baclofen was antagonized by DAVA, but the effect of muscimol was not antagonized by bicuculline. 4. Exogenous norepinephrine(NE) and ATP contracted muscle strip concentration dependently, but the effect of acetylcholine was negligible : and GABA did not affect the NE-and ATP-induced contractions. 5. GABA, baclofen and muscimol did not affect basal tone, and GABA did not affect the NE-and ATP-induced contractionsm 6. EFS-induced contraction was including 2 distinctable components. The first phasic component was inhibited by beta gamma-methylene ATP(mATP), a desensitizing agent of APT receptor and the second tonic component was reduced by pretreatment of reserpine(3 mg/Kg, IP). 7. GABA inhibited the EFS-induced contraction of reserpinized strips, but not the mATP-treated strips. These results suggest that in the prostatic portion of the rat vas deferens, adrenergic and purinergic neurotransmissions are exist, and GABA inhibits the release of ATP via presynaptic $GABA_B$ receptor on the excitatory neurons.

  • PDF

Suppression of Peripheral Sympathetic Activity Underlies Protease-Activated Receptor 2-Mediated Hypotension

  • Kim, Young-Hwan;Ahn, Duck-Sun;Joeng, Ji-Hyun;Chung, Seungsoo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.6
    • /
    • pp.489-495
    • /
    • 2014
  • Protease-activated receptor (PAR)-2 is expressed in endothelial cells and vascular smooth muscle cells. It plays a crucial role in regulating blood pressure via the modulation of peripheral vascular tone. Although some reports have suggested involvement of a neurogenic mechanism in PAR-2-induced hypotension, the accurate mechanism remains to be elucidated. To examine this possibility, we investigated the effect of PAR-2 activation on smooth muscle contraction evoked by electrical field stimulation (EFS) in the superior mesenteric artery. In the present study, PAR-2 agonists suppressed neurogenic contractions evoked by EFS in endothelium-denuded superior mesenteric arterial strips but did not affect contraction elicited by the external application of noradrenaline (NA). However, thrombin, a potent PAR-1 agonist, had no effect on EFS-evoked contraction. Additionally, ${\omega}$-conotoxin GVIA (CgTx), a selective N-type $Ca^{2+}$ channel ($I_{Ca-N}$) blocker, significantly inhibited EFS-evoked contraction, and this blockade almost completely occluded the suppression of EFS-evoked contraction by PAR-2 agonists. Finally, PAR-2 agonists suppressed the EFS-evoked overflow of NA in endothelium-denuded rat superior mesenteric arterial strips and this suppression was nearly completely occluded by ${\omega}$-CgTx. These results suggest that activation of PAR-2 may suppress peripheral sympathetic outflow by modulating activity of $I_{Ca-N}$ which are located in peripheral sympathetic nerve terminals, which results in PAR-2-induced hypotension.

General Pharmacological Properties of the New +/K+ ATPase Inhibitor DBM-819

  • Park, Woo-Kyu;Kong, Jae-Yang;Kim, Hyun-Jung;Lee, Dong-Ha;Lim, Hong;Cheon, Hyae-Gyeong
    • Biomolecules & Therapeutics
    • /
    • v.10 no.1
    • /
    • pp.19-24
    • /
    • 2002
  • The effects of a newly synthesized $H^+/K^+$ ATPase inhibitor,1-(2-methyl-4-methoxypheny)-4-[(3-hy-droxypropyl)amino] -6-methyl-2,3-dihydropyrrolo (3,2-c) quinoline (DBM-819) , on the central nervous system, isolated smooth muscle, cardiovascular and digestive systems and renal function were investigated in various experimental animals. Oral administration of DBM-819 had no effect on the central nervous system except body temperature of mice slightly decreased at doses of 15 and 50 mg/kg. DBM-819 produced a moderate analgesic effect in acetic acid-induced writhing test in mice at 50 mg/kg (p.o.). In conscious rats, DBM-819 (15 and 50 mg/kg, p.o.) showed a slight increase in blood pressure and a small decrease in heart rate. DBM-819 had an significant effect on agonist-induced contraction of guinea pig ileum at $1.5{\times}10^{-5}g/ml.$ No significant effect of DBM-819 (5 and 15 mg/kg, i.p) on urinary volume or urinary excretion of $Na^+,\;K^+$ and Cl- was observed in rats. DBM-819 had no significant effect on intestinal transport of a semisolid meal in mice at 15 and 50 mg/kg (p.o.). These findings suggest that DBM-819 exerts no significant pharmacological effects on the central nervous system and renal function at 15 mg/kg (p.o.), but produces some effects on the smooth muscle and circulatory system.

Hypothermia Inhibits Endothelium-Independent Vascular Contractility via Rho-kinase Inhibition

  • Chung, Yoon Hee;Oh, Keon Woong;Kim, Sung Tae;Park, Eon Sub;Je, Hyun Dong;Yoon, Hyuk-Jun;Sohn, Uy Dong;Jeong, Ji Hoon;La, Hyen-Oh
    • Biomolecules & Therapeutics
    • /
    • v.26 no.2
    • /
    • pp.139-145
    • /
    • 2018
  • The present study was undertaken to investigate the influence of hypothermia on endothelium-independent vascular smooth muscle contractility and to determine the mechanism underlying the relaxation. Denuded aortic rings from male rats were used and isometric contractions were recorded and combined with molecular experiments. Hypothermia significantly inhibited fluoride-, thromboxane $A_{2-}$, phenylephrine-, and phorbol ester-induced vascular contractions regardless of endothelial nitric oxide synthesis, suggesting that another pathway had a direct effect on vascular smooth muscle. Hypothermia significantly inhibited the fluoride-induced increase in pMYPT1 level and phorbol ester-induced increase in pERK1/2 level, suggesting inhibition of Rho-kinase and MEK activity and subsequent phosphorylation of MYPT1 and ERK1/2. These results suggest that the relaxing effect of moderate hypothermia on agonist-induced vascular contraction regardless of endothelial function involves inhibition of Rho-kinase and MEK activities.

Effects of Recombinant Imperatoxin A (IpTxa) Mutants on the Rabbit Ryanodine Receptor

  • Seo, In-Ra;Choi, Mu-Rim;Park, Chul-Seung;Kim, Do Han
    • Molecules and Cells
    • /
    • v.22 no.3
    • /
    • pp.328-335
    • /
    • 2006
  • Imperatoxin A ($IpTx_a$), a 3.7 kDa peptide from the African scorpion Pandinus imperator, is an agonist of the skeletal muscle ryanodine receptor (RyR1). In order to study the structure of the toxin and its effect on RyR1, $IpTx_a$ cDNA was PCR-amplified using 3 pairs of primers, and the toxin was expressed in E. coli. The toxin was further purified by chromatography, and various point mutants in which basic amino acids were substituted by alanine were prepared by site-directed mutagenesis. Studies of single channel properties by the planar lipid bilayer method showed that the recombinant $IpTx_a$ was identical to the synthetic $IpTx_a$ with respect to high-performance liquid chromatography mobility, amino acid composition and specific effects on RyR1. Mutations of certain basic amino acids ($Lys^{19}$, $Arg^{23}$, and $Arg^{33}$) dramatically reduced the capacity of the peptide to activate RyRs. A subconductance state predominated when $Lys^8$ was substituted with alanine. These results suggest that some basic amino acid residues in $IpTx_a$ are important for activation of RyR1, and that $Lys^8$ plays an important role in regulating the gating mode of RyR1.