• 제목/요약/키워드: Agonist muscle

검색결과 129건 처리시간 0.03초

돼지 난관협부 평활근의 운동성에 대한 acetylcholine, norepinephrine, histamine 및 prostaglandin F2α의 작용 (Actions of acetylcholine, norepinephrine, histamine and prostaglandin F2α on motility of pig oviductal isthmic smooth muscle)

  • 노규진;박상은;심철수;김주헌;최상용
    • 대한수의학회지
    • /
    • 제34권3호
    • /
    • pp.493-500
    • /
    • 1994
  • The purpose of this study was to investigate the effects of neurotransmitters and the source of $Ca^{2+}$ in the effects of neurotransmitters on the motility of pig oviductal isthmic smooth muscle. The motility of the isolated smooth muscle was recorded by using physiological recording system. The results were summarized as follows; Acetylcholine, norepinephrine, histamine and prostaglandin $F_{2{\alpha}}(PGF_{2{\alpha}})$ caused the contraction and the contractile responses were increased in a dose-dependent manner from the concentration of $10^{-7}$ to $10^{-4}M$. The maximum contractility of acetylcholine, norepinephrine, histamine and $PGF_{2{\alpha}}$ was 65.99, 28.66, 83.99 and 47.33% of 100 mM K contraction, respectively. The contractile response induced by acetylcholine$(10^{-6}M)$ was completely blocked by the pretreatment with cholinergic receptor blocker, atropine$(10^{-6}M)$, the contractile response induced by norepinephrine$(10^{-5}M)$ was blocked by the pretreatment with ${\alpha}$-adrenergic receptor blocker, phentolamine$(10^{-6}M)$ but was not blocked and rather increased by the pretreatment with ${\beta}$-adrenergic receptor blocker. propranolol$(10^{-6}M)$, the contractile response induced by histamine$(10^{-6}M)$ was completely blocked by the pretreatment with $H_1$-histaminergic receptor blocker, pyrilamine$(10^{-6}M)$ but was increased by the pretreatment with $H_2$-histaminergic receptor blocker, cimetidine$(10^{-6}M)$. The contractile response induced by acetylcholine$(10^{-6}M)$, norepinephrine$(10^{-5}M)$ and histamine$(10^{-6}M)$ was weakly contracted response in $Ca^{2+}$-free medium, but the contractile response induced by $PGF_{2{\alpha}}(10^{-6}M)$ was disappeared. The contractile response induced by acetylcholine$(10^{-6}M)$, norepinephrine$(10^{-5}M)$ and histamine$(10^{-6}M)$ was powerfully depressed by the pretreatment with $Ca^{2+}$-channel blocker, verapamil$(10^{-5}M)$ but the contractile response induced by $PGF_{2{\alpha}}(10^{-6}M)$ was completely inhibited.

  • PDF

인체 정관의 약리학적 검색 -아드레날린성 및 콜린성 수용체의 공존과 Diazepam의 작용- (Pharmacological Studies on Human Vas Deferens -Coexistence of Adrenergic and Cholinergic Receptors, and Effect of Diazepam-)

  • 김원준;이광윤;하정희;박동춘
    • 대한약리학회지
    • /
    • 제24권2호
    • /
    • pp.189-195
    • /
    • 1988
  • 인체 정관 평활근에서 각종 자율신경전달체 수용체의 유무를 조사하고 benzodiazepine계의 진정-항불안제인 diazepam이 평활근 운동성에 미치는 작용을 관찰하기 위하여, 32내지 45세의 건강한 지원자로부터 정관절편을 얻었다. 정관 절제술은 국소마취하에 시행되었고, 정관절편의 수축력 측정은 등장성장력측정기에 의하였다. 적출장기실험조 내에서 정관절편의 자율수축은 관찰되지 않았으나, norepinephrine에 대한 반응성은 $33^{\circ}C$에서 가장 예민하였던 바, 이 norepinephrine에 의한 농도의존적 수축력증가작용은 알파-아드레날린성 차단제인 phentolamine에 의해 억제되었다. 또 인체 정관절편은 본 실험의 조건하에서 isoproterenol 의하여 수축하였고, 이 수축작용은 베타-아드레날린성 차단제인 propranolol 의하여 완전히 제거되었다. 동시에 인체 정관절편은 acetylcholine에의해서도 비교적 강하게 수축하였고, 이 수축작용은 콜린성 무스카린성 차단제인 atropine에 의하여 완전히 억제되었다. Diazepam은 norepinephrine에 의한 수축을농도 의존적으로 억 제 하였다. 이상의 결과를 종합하면, 인체 정관 평활근은 체온보다 낮은 $33^{\circ}C$에서 그 활동성이 가장 강하고, 자율신경에 대하여서는 아드레날린성 및 콜린성 수용체가 공존하고 있으며, diazepam은 그 수축력을 약화시킨다고 사료된다.

  • PDF

Evidence for Adenosine Triphosphate (ATP) as an Excitatory Neurotransmitter in Guinea-Pig Gastric Antrum

  • Kang, Tong-Mook;Xu, Wenxie;Kim, Sung-Joon;Ahn, Seung-Cheol;Kim, Young-Chul;So, In-Suk;Park, Myoung-Kyu;Uhm, Dae-Yong;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권2호
    • /
    • pp.165-174
    • /
    • 1999
  • We explore the question of whether adenosine 5'-triphosphate (ATP) acts as an excitatory neurotransmitter in guinea-pig gastric smooth muscle. In an organ bath system, isometric force of the circular smooth muscle of guinea-pig gastric antrum was measured in the presence of atropine and guanethidine. Under electrical field stimulation (EFS) at high frequencies (>20 Hz), NO-mediated relaxation during EFS was followed by a strong contraction after the cessation of EFS (a 'rebound-contraction'). Exogenous ATP mimicked the rebound-contraction. A known $P_{2Y}-purinoceptor$ antagonist, reactive blue 2 (RB-2), blocked the rebound-contraction while selective desensitization of $P_{2Y}-purinoceptor$ with ${\alpha},{\beta}-MeATP$ did not affect it. ATP and 2-MeSATP induced smooth muscle contraction, which was effectively blocked by RB-2 and suramin, a nonselective $P_2-purinoceptor$ antagonist. Particularly, in the presence of RB-2, exogenous ATP and 2-MeSATP inhibited spontaneous phasic contractions, suggesting the existence of different populations of purinoceptors. Both the rebound-contraction and the agonist-induced contraction were not inhibited by indomethacin. The rank orders of agonists' potency were 2-MeSATP > ATP ${ge}$ UTP for contraction and ${\alpha},{\beta}-MeATP\;{\ge}\;{\beta},{\gamma}-MeATP$ for inhibition of the phasic contraction, that accord with the commonly accepted rank order of the classical $P_{2Y}-purinoceptor$ subtypes. Electrical activities of smooth muscles were only slightly influenced by ATP and 2-MeSATP, whereas ${\alpha},{\beta}-MeATP$ attenuated slow waves with membrane hyperpolarization. From the above results, it is suggested that ATP acts as an excitatory neurotransmitter, which mediates the rebound-contraction via $P_{2Y}-purinoceptor$ in guinea-pig gastric antrum.

  • PDF

Isoproterenol에 의한 자궁근 이완의 기전 : 4-aminopyridine-sensitive K+ 채널의 개방 (Mechanism of isoproterenol-induced relaxation of the rat uterine smooth muscle: Activation of 4-aminopyridine-sensitive K+ channels)

  • 김기하;이영재;조명행;이문한;전보권;류판동
    • 대한수의학회지
    • /
    • 제36권1호
    • /
    • pp.83-91
    • /
    • 1996
  • Activation of $K^+$ channels induces relaxation of smooth muscles by reducing electrical excitability and cytosolic free $Ca^{2+}$ level. ${\beta}$-adrenergic agonist isoproterenol is known to induce relaxation of the uterine smooth muscle by membrane hyperpolarization and $K^+$ efflux. Recently it is suggested that the activity of $Ca^{2+}$-activated $K^+$ channel was increased by isoproterenol in the uterine myocytes isolated from myometrium of the pregnant rat. However, the type of $K^+$ channel mediating the relaxant effect of isopreterenol in the tissue level has not yet studied. In this work, we investigated the type of $K^+$ channels involved in the isoproterenol-induced relaxation of uterine smooth muscle by measuring the integrated insometric tension of the estrogen-treated isolated nonpregnant rat uterus. Contraction of uterine tissue was induced by oxytocin (0.2nM, 2~3 contractions/min) or high KCl(20~80mM). The result are as follows : 1. Isoproterenol($10^{-10}{\sim}10^{-4}M$) inhibited oxytocin-induced contraction of isolated rat uterus($EC_{50}=1.17{\times}10^{-10}M$). 2. Isoproterenol($10^{-10}{\sim}10^{-4}M$) effectively inhibited uterine contraction induced by low KCl(20~40mM) but little those induced by high KCl(60~80mM). 3. Relaxant effect of isoproterenol($10^{-10}{\sim}10^{-4}M$) on 0.2nM oxytocin-induced contraction was effectively reduced by 4-aminopyridine(3, 10mM) but little by TEA(10~30mM), $Ba^{2+}$($1{\sim}30{\mu}M$) and glibenclamide($100{\mu}M$). Our data suggest that the relaxant effect of isoproterenol is mediated by the $K^+$ channel(s) which can be blocked by 4-aminopyridine.

  • PDF

Different Mechanisms for $K^+-Induced$ Relaxation in Various Arteries

  • Suh, Suk-Hyo;Park, Sung-Jin;Choi, Jai-Young;Sim, Jae-Hoon;Kim, Young-Chul;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권4호
    • /
    • pp.415-425
    • /
    • 1999
  • $[K^+]_o$ can be increased under a variety of conditions including subarachnoid hemorrhage. The increase of $[K^+]_o$ in the range of $5{\sim}15$ mM may affect tensions of blood vessels and cause relaxation of agonist-induced precontracted vascular smooth muscle $(K^+-induced$ relaxation). In this study, effect of the increase in extracellular $K^+$ concentration on the agonist-induced contractions of various arteries including resistant arteries of rabbit was examined, using home-made Mulvany-type myograph. Extracellular $K^+$ was increased in three different ways; from initial 1 to 3 mM, from initial 3 to 6 mM, or from initial 6 to 12 mM. In superior mesenteric arteries, the relaxation induced by extracellular $K^+$ elevation from initial 6 to 12 mM was the most prominent among the relaxations induced by the elevations in three different ways. In cerebral arteries, the most prominent relaxation was produced by the elevation of extracellular $K^+$ from initial 1 to 3 mM and a slight relaxation was provoked by the elevation from initial 6 to 12 mM. In superior mesenteric arteries, $K^+-induced$ relaxation by the elevation from initial 6 to 12 mM was blocked by $Ba^{2+}\;(30\;{\mu}M)$ and the relaxation by the elevation from 1 to 3 mM or from 3 to 6 mM was not blocked by $Ba^{2+}.$ In cerebral arteries, however, $K^+-induced$ relaxation by the elevation from initial 3 to 6 mM was blocked by $Ba^{2+},$ whereas the relaxation by the elevation from 1 to 3 mM was not blocked by $Ba^{2+}.$ Ouabain inhibited all of the relaxations induced by the extracellular $K^+$ elevations in three different ways. In cerebral arteries, when extracellular $K^+$ was increased to 14 mM with 2 or 3 mM increments, almost complete relaxation was induced at 1 or 3 mM of initial $K^+$ concentration and slight relaxation occurred at 6 mM. TEA did not inhibit $Ba^{2+}-sensitive$ relaxation at all and NMMA or endothelial removal did not inhibit $K^+-induced$ relaxation. Most conduit arteries such as aorta, carotid artery, and renal artery were not relaxed by the elevation of extracellular $K^+.$ Among conduit arteries, trunk of superior mesenteric artery and basilar artery were relaxed by the elevations of $[K^+]_o.$ These data suggest that $K^+-induced$ relaxation has two independent components, $Ba^{2+}-sensitive$ and $Ba^{2+}-insensitive$ one and there are different mechanisms for $K^+-induced$ relaxation in various arteries.

  • PDF

Requirement of Pretone by Thromboxane $A_2$ for Hypoxic Pulmonary Vasoconstriction in Precision-cut Lung Slices of Rat

  • Park, Su-Jung;Yoo, Hae-Young;Kim, Hye-Jin;Kim, Jin-Kyoung;Zhang, Yin-Hua;Kim, Sung-Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제16권1호
    • /
    • pp.59-64
    • /
    • 2012
  • Hypoxic pulmonary vasoconstriction (HPV) is physiologically important response for preventing mismatching between ventilation and perfusion in lungs. The HPV of isolated pulmonary arteries (HPV-PA) usually require a partial pretone by thromboxane agonist (U46619). Because the HPV of ventilated/perfused lungs (HPV-lung) can be triggered without pretone conditioning, we suspected that a putative tissue factor might be responsible for the pretone of HPV. Here we investigated whether HPV can be also observed in precision-cut lung slices (PCLS) from rats. The HPV in PCLS also required partial contraction by U46619. In addition, $K^+$ channel blockers (4AP and TEA) required U46619-pretone to induce significant contraction of PA in PCLS. In contrast, the airways in PCLS showed reversible contraction in response to the $K^+$ channel blockers without pretone conditioning. Also, the airways showed no hypoxic constriction but a relaxation under the partial pretone by U46619. The airways in PCLS showed reliable, concentration-dependent contraction by metacholine ($EC_{50}$, ~210 nM). In summary, the HPV in PCLS is more similar to isolated PA than V/P lungs. The metacholineinduced constriction of bronchioles suggested that the PLCS might be also useful for studying airway physiology in situ.

발현성 고혈압쥐의 관상순환 기능과 심장근의 에너지 대사에 관한 생체외 에너지원의 관류 연구 (Substrate-Perfusion Studies on Coronary Circulation and Myocardial Energy Metabolism in Spontaneously Hypertensive Rat Hearts)

  • 김은지
    • Journal of Nutrition and Health
    • /
    • 제28권2호
    • /
    • pp.115-126
    • /
    • 1995
  • The effects of energy-yielding substrates on coronary circulation, myocardial oxygen metabolism, and intramyocytic adenylates of perfused Wistar control rat(WC) and spontaneously hypertensive rat(SHR) hearts were examined under basal and $\beta$-adrenergic stimulation conditions. The perfusion medium (1.0mM Ca2+) contained 5mM glucose (+5U/l insulin) in combination with 5mM pyruvate, 5mM lacate, 5mM acetate, or 5mM octanoate as energy substrates. Hearts were perfused with each substrate buffer for 20min under basal conditions. Coronary functinal hyperemia was induced by infusing for 20min isoproterenol (ISO, 1uM), a $\beta$-receptor agonist. Cardiac adenylates, glycolytic intermediates, and coronary venous lactate were measured by using an enzymatic analysis technique. Under basal conditions, acetate and octanoate significantly increased coronary flow(CF) of WC in parallel with myocardial oxygen consumption. However, CF of SHR was partly attenuated by coronary vasoconstriction despite metabolic acidosis. In addition, pyruvate and lactate depressd ISO-induced coronary functional hyperemia in SHR. It should be noted that octanoate exhibited coronary dysfunction under ISO conditions. On the other hand, fat substrates depleted myocardial high energy phosphate pool and accumulated breakdown intermediates. In SHR with coronary vasoconstriction under basal conditions, and with depressed coronary functional hyperemia, high energy phosphates were greatly depleted. These results suggest that energy substrates in the myocardium and coronary smooth muscle alter remarkably coronary circulation, and that coronary circulatory function is associated with a reserve of high energy phosphates and a balance between breakdown and nono synthesis of energy phosphates. These findings could be explained by alterations in the cytosolic redox state manipulated by LDH and hence in the cytosolic phosphorylation potential, which might be involved in hypertension of SHR.

  • PDF

Caffeine Indirectly Activates Ca2+-ATPases in the Vesicles of Cardiac Junctional Sarcoplasmic Reticulum

  • Kim, Young-Kee;Cho, Hyoung-Jin;Kim, Hae-Won
    • BMB Reports
    • /
    • 제29권1호
    • /
    • pp.22-26
    • /
    • 1996
  • Agents that activate or inhibit the $Ca^{2+}$ release channel in cardiac sarcoplasmic reticulum (SR) were tested for their abilities to affect the activity of the SR $Ca^{2+}$-ATPase. Vesicles of junctional SR (heavy SR, HSR) from terminal cisternae were prepared from porcine cardiac muscle by density gradient centrifugation. The steady-state activity of $Ca^{2+}$-ATPases in intact HSR vesicles was/$347{\pm}5\;nmol/min{\cdot}mg$ protein (${\pm}$ SD). When the HSR vesicles were made leaky, the activity was increased to $415{\pm}5\;nmol/min{\cdot}mg$ protein. This increase is probably due to the uncoupling of HSR vesicles. Caffeine (10 mM), an agonist of the SR $Ca^{2+}$ release channel, increased $Ca^{2+}$-ATPase activity in the intact HSR vesicle preparation to $394{\pm}30\;nmol/min{\cdot}mg$ protein. However, caffeine had no significant effect in the leaky vesicle preparation and in the purified $Ca^{2+}$-ATPase preparation. The effect of caffeine on SR $Ca^{2+}$-ATPase was investigated at various concentrations of $Ca^{2+}$. Caffeine increased the pump activity over the whole range of $Ca^{2+}$ concentrations, from $1\;{\mu}M$ to $250\;{\mu}M$, in the intact HSR vesicles. When the SR $Ca^{2+}$-ATPase was inhibited by thapsigargin, no caffeine effect was observed. These results imply that the caffeine effect requires the intact vesicles and that the increase in $Ca^{2+}$-ATPase activity is not due to a direct interaction of caffeine with the enzyme. We propose that the activity of SR $Ca^{2+}$-ATPase is linked indirectly to the activity of the $Ca^{2+}$ release channel (ryanodine receptor) and may depend upon the amount of $Ca^{2+}$ released by the channels.

  • PDF

Development and Application of a Method for Rapid and Simultaneous Determination of Three β-agonists (Clenbuterol, Ractopamine, and Zilpaterol) using Liquid Chromatography-tandem Mass Spectrometry

  • Sung, In Kyung;Park, Seo Jung;Kang, Kyutae;Kim, Min Young;Cho, Seongbeom
    • 한국축산식품학회지
    • /
    • 제35권1호
    • /
    • pp.121-129
    • /
    • 2015
  • ${\beta}$-agonists are anabolic compounds that promote fat loss and muscle gain, and their administration to livestock may provide economic benefits by increasing growth rate and feed efficiency. For these reasons, ${\beta}$-agonists are also commonly added to livestock feed as growth promoters. This can introduce a significant risk of secondary human poisoning through intake of contaminated meat. A new method for the simultaneous determination of three ${\beta}$-agonists (clenbuterol, ractopamine, and zilpaterol) was developed in this study and applied to various meat samples. The limits of quantification, derived through a validation test following Codex guidelines, were $0.2{\mu}g/kg$ for clenbuterol and zilpaterol, and $0.4{\mu}g/kg$ for ractopamine. The average recoveries for clenbuterol, ractopamine, and zilpaterol ranged from 109.1% to 118.3%, 95.3% to 109.0%, and 94.1% to 120.0%, respectively. The recovery and coefficient of variation (CV) values fell within the acceptable range according to the Codex guidelines. This method reduced the analysis time without decreasing detection efficiency by modifying the pretreatment steps. This method could be utilized to manage the safety of imported meat products from countries where zilpaterol use is still permitted, thereby improving public health and preventing ${\beta}$-agonist poisoning due to secondary contamination.

Functional characterization of $P_{2X}/P_{2Y}$ receptor in isolated swine renal artery

  • Kim, Joo-heon;Jeon, Je-cheol;Lee, Sang-kil;Lee, Su-jin;Lee, Younggeon;Won, Jinyoung;Kang, Jae seon;Hong, Yonggeun
    • 대한수의학회지
    • /
    • 제47권4호
    • /
    • pp.371-378
    • /
    • 2007
  • To understand the role of $PM_{2X}/P_{2Y}$ receptor in cortex region of kidney and renal artery, molecular and functional analysis of $PM_{2X}/P_{2Y}$ receptor by pharmacophysiological skill in conventional swine tissues were performed. In functional analysis of $P_{2Y}$ receptor for vascular relaxation, 2-methylthio adenosine triphosphate, a strong agonist of $P_{2Y}$ receptor, induced relaxation of noradrenaline (NA)-precontracted renal artery in a dose-dependent manner. Strikingly, relaxative effect of ATP, 2-msATP, agonists of $P_{2Y}$ receptor, abolished by treatment of reactive blue 2, a putative $P_{2Y}$ receptor antagonist. In contrast, no significant differences of gene encoding $PM_{2X}/P_{2Y}$ and protein expression in immortalized suprachiasmatic nucleus from brain, primary isolated vascular smooth muscle cells from renal artery of pigs and HEK293 from human embryonic kidney under with/without adenosine triphosphate were observed. Taken together, the relationship between molecular and functional characteristic of $PM_{2X}/P_{2Y}$ receptors in conventional pig should be considered that they are another important factor which regulate the kidney function in swine. Based on this study, we propose the purinergic receptor as well as adrenergic and cholinergic receptors is an essential component of the renal homeostasis.