• 제목/요약/키워드: Aglycon protopanaxatriol

검색결과 3건 처리시간 0.025초

Complete Biotransformation of Protopanaxatriol-Type Ginsenosides in Panax ginseng Leaf Extract to Aglycon Protopanaxatriol by β-Glycosidases from Dictyoglomus turgidum and Pyrococcus furiosus

  • Yang, Eun-Joo;Shin, Kyung-Chul;Lee, Dae Young;Oh, Deok-Kun
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권2호
    • /
    • pp.255-261
    • /
    • 2018
  • Aglycon protopanaxatriol (APPT) has valuable pharmacological effects such as memory enhancement and tumor inhibition. ${\beta}$-Glycosidase from the hyperthermophilic bacterium Dictyoglomus turgidum (DT-bgl) hydrolyzes the glucose residues linked to APPT, but not other glycoside residues. ${\beta}$-Glycosidase from the hyperthermophilic bacterium Pyrococcus furiosus (PF-bgl) hydrolyzes the outer sugar at C-6 but not the inner glucose at C-6 or the glucose at C-20. Thus, the combined use of DT-bgl and PF-bgl is expected to increase the biotransformation of PPT-type ginsenosides to APPT. We optimized the ratio of PF-bgl to DT-bgl, the concentrations of substrate and enzyme, and the reaction time to increase the biotransformation of ginsenoside Re and PPT-type ginsenosides in Panax ginseng leaf extract to APPT. DT-bgl combined with PF-bgl converted 1.0 mg/ml PPT-type ginsenosides in ginseng leaf extract to 0.58 mg/ml APPT without other ginsenosides, with a molar conversion of 100%. We achieved the complete biotransformation of ginsenoside Re and PPT-type ginsenosides in ginseng leaf extract to APPT by the combined use of two ${\beta}$-glycosidases, suggesting that discarded ginseng leaves can be used as a source of the valuable ginsenoside APPT. To the best of our knowledge, this is the first quantitative production of APPT using ginsenoside Re, and we report the highest concentration and productivity of APPT from ginseng extract to date.

사람의 장내세균에 의한 인삼사포닌의 대사 (Metabolism of Ginseng Saponins by Human Intestinal Bacteria)

  • 성종환;장곡천수부;송궁지지;내산아수;하주영;이문순;허재두
    • 생약학회지
    • /
    • 제26권4호
    • /
    • pp.360-367
    • /
    • 1995
  • The metabolism of ginseng saponins by human intestinal bacteria was studied using human feces under anaerobic culture conditions. $Ginsenoside-Rb_1$, $-Rb_2$ and -Rc(protopanaxadiol type) were mainly metabolized to compound-K(C-K), $20-O-[{\alpha}-L-arabinopyranosyl(1{\rightarrow}6)-{\beta}-{_D}-glucopyranosyl]-20(S)-protopanaxadiol(compound-Y,\;C-Y)$, $20-O-[{\alpha}-L-arabinopyranosyl(1{\rightarrow}6)-{\beta}-{_D}-glucopyranosyll-20(S)-protopanaxadiol(ginsenosied-MC,{\;}MC)$, respectively, and $ginsenoside-Rg_1$ and -Re(protopanaxatriol type) to their aglycon, 20(S)-protopanaxatriol, though the pathway and rate of the metabolism were affected by fermentation medium. C-K was not decomposed any more, while C-Y and Mc were both gradually hydrolyzed to C-K.

  • PDF

Effect of anti-skin disorders of ginsenosides- A Systematic Review

  • Lele Cong;Jinli Ma;Yundong Zhang;Yifa Zhou;Xianling Cong;Miao Hao
    • Journal of Ginseng Research
    • /
    • 제47권5호
    • /
    • pp.605-614
    • /
    • 2023
  • Ginsenosides are bioactive components of Panax ginseng with many functions such as anti-aging, anti-oxidation, anti-inflammatory, anti-fatigue, and anti-tumor. Ginsenosides are categorized into dammarane, oleanene, and ocotillol type tricyclic triterpenoids based on the aglycon structure. Based on the sugar moiety linked to C-3, C-20, and C-6, C-20, dammarane type was divided into protopanaxadiol (PPD) and protopanaxatriol (PPT). The effects of ginsenosides on skin disorders are noteworthy. They play antiaging roles by enhancing immune function, resisting melanin formation, inhibiting oxidation, and elevating the concentration of collagen and hyaluronic acid. Thus, ginsenosides have previously been widely used to resist skin diseases and aging. This review details the role of ginsenosides in the anti-skin aging process from mechanisms and experimental research.