• Title/Summary/Keyword: Agitation process

Search Result 155, Processing Time 0.03 seconds

The Effect of Solution Agitation on the Electroless Cu Deposition Within Nano-patterns (용액 교반이 미세 패턴 내 무전해 구리 도금에 미치는 영향)

  • Lee, Joo-Yul;Kim, Man;Kim, Deok-Jin
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.1
    • /
    • pp.23-27
    • /
    • 2008
  • The effect of solution agitation on the copper electroless deposition process of ULSI (ultra large scale integration) interconnections was investigated by using physical, electrochemical and electrical techniques. It was found that proper solution agitation was effective to obtain superconformal copper configuration within the trenches of $130{\sim}80nm$ width. The transition of open potential during electroless deposition process showed that solution agitation induced compact structure of copper deposits by suppressing mass transfer of cuprous ions toward substrate. Also, the specific resistivity of copper layers was lowered by increasing agitation speed, which made the deposited copper particles smaller. Considering both copper deposit configuration and electric property, around 500 rpm of solution agitation was the most suitable for the homogeneous electroless copper filling within the ultra-fine patterns.

Effects of Two Music Therapy Methods on Agitation and Anxiety among Patients Weaning off Mechanical Ventilation: A Pilot Study

  • Park, Jong Yoen;Park, Soohyun
    • Journal of Korean Academy of Fundamentals of Nursing
    • /
    • v.26 no.2
    • /
    • pp.136-143
    • /
    • 2019
  • Purpose: The feasibility and differential effects of two music therapy methods (interventions with preferred music vs. classical relaxation music) were done to examine the effects on agitation and anxiety in patients weaning off mechanical ventilation. Methods: This pilot study was conducted using a crossover design. Six patients listened to preferred music choices and classical relaxation music. Anxiety scores were measured using the Richmond Agitation Sedation Scale (RASS), State-Trait Anxiety Inventory (STAI), and visual analog scale (VAS). Results: Patients showed a significant decrease in agitation and anxiety after both the preferred and classical relaxation music interventions. The difference in the effects of preferred music and that of classical relaxation music was not significant. As for feasibility, patients exhibited a change in agitated behaviors after the music interventions by not trying to take off medical devices and quietly listening to the music, and by smiling and moving lips along with the lyrics while listening. Conclusion: Music interventions which centered on either patients' preferences or classical relaxation music to enhance relaxation, helped reduce agitation and anxiety during the mechanical ventilation weaning process.

Effect of an Intervention Using Voice Recording of a Family Member on Patients Undergoing Mechanical Ventilator Weaning Process (녹음된 목소리를 통한 가족중재가 인공호흡기 이탈 과정 환자에게 미치는 효과)

  • Choi, Ah Young;Kim, Min Young;Song, Eun Kyeung
    • Journal of Korean Academy of Nursing
    • /
    • v.54 no.1
    • /
    • pp.32-43
    • /
    • 2024
  • Purpose: This study aimed to determine the impact of an intervention using voice recording of family members on pain, anxiety, and agitation in patients undergoing weaning from mechanical ventilation. Methods: A randomized control pre-post experimental design was implemented to 53 participants, with 27 and 26 participants in the experimental and control groups, respectively. A 70-second voice recording of a family member, repeated three times at 10-minute intervals was used as an intervention for the experimental group. Meanwhile, participants in the control group used headset for 30 minutes. Structured instruments were utilized to measure pain, anxiety, agitation, and the weaning process. Wilcoxon Signed Ranks test and the Mann-Whitney U test, or χ2 test, were used for data analysis. Results: The experimental group exhibited significant decrease in pain (Z = - 3.53, p < .001), anxiety (t = 5.45, p < .001), and agitation (Z = - 2.99, p = .003) scores compared with those of the control group. However, there was no significant difference between groups in the weaning process' simplification (χ2 = 0.63, p = .727). Conclusion: Intervention using family members' voice recording effectively reduces pain, anxiety, and agitation in patients undergoing weaning from mechanical ventilation. This can be actively utilized to provide a more comfortable process for patients.

Effects of Dissolved Oxygen and Agitation on Production of Serratiopeptidase by Serratia Marcescens NRRL B-23112 in Stirred Tank Bioreactor and its Kinetic Modeling

  • Pansuriya, Ruchir C.;Singhal, Rekha S.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.4
    • /
    • pp.430-437
    • /
    • 2011
  • The effects of the agitation and aeration rates on the production of serratiopeptidase (SRP) in a 5-L fermentor (working volume 2-l) were systematically investigated using Serratia marcescens NRRL B-23112. The dissolved oxygen concentration, pH, biomass, SRP yield, and maltose utilization were all continuously measured during the course of the fermentation runs. The efficiencies of the aeration and agitation were evaluated based on the volumetric mass transfer coefficient ($K_La$). The maximum SRP production of 11,580 EU/ml with a specific SRP productivity of 78.8 EU/g/h was obtained with an agitation of 400 rpm and aeration of 0.075 vvm, which was 58% higher than the shake-flask level. The $K_La$ for the fermentation system supporting the maximum production (400 rpm, 0.075 vvm) was 11.3 $h^{-1}$. Under these fermentor optimized conditions, kinetic modeling was performed to understand the detailed course of the fermentation process. The resulting logistic and Luedeking-Piret models provided an effective description of the SRP fermentation, where the correlation coefficients for cell growth, SRP formation, and substrate consumption were 0.99, 0.94, and 0.84, respectively, revealing a good agreement between the model-predicted and experimental results. The kinetic analysis of the batch fermentation process for the production of SRP demonstrated the SRP production to be mixed growth associated.

Optimization of methylene blue adsorption by pumice powder

  • Cifci, Deniz Izlen;Meric, Sureyya
    • Advances in environmental research
    • /
    • v.5 no.1
    • /
    • pp.37-50
    • /
    • 2016
  • The main objective of this study is to evaluate adsorptive removal of Methylene Blue (MB) dye from aqueous solution using pumice powder. The effects of pH, adsorption time, agitation speed, adsorbent dose, and dye concentrations on dye adsorption were investigated. Process kinetics and isotherm model constants were determined accordingly. The results showed that adsorbent dose, dye concentration and agitation speed are the important parameters on dye adsorption and the removal of MB did not significantly change by varying pH. A total adsorption process time of 60 min was observed to be sufficient to effectively remove 50 mg/L MB concentration. The MB adsorption data obeyed both pseudo first order and second order kinetic models. Adsorption of MB by pumice fitted well both Langmiur and Freundlich isotherms ($R^2{\geq}0.9700$), except for 150 rpm agitation speed that system fitted only Langmiur isotherm. The results of this study emphasize that pumice powder can be used as a low cost and effective adsorbent for dye removal.

On-Line Estimation of Cell Growth from Agitation Speed in DO-Stat Culture of a Filamentous Microorganism, Agaricus blazei

  • Na, Jeong-Geol;Kim, Hyun-Han;Chang, Yong-Keun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.6
    • /
    • pp.571-575
    • /
    • 2005
  • A simple, but effective on-line method for estimating the mycelial cell mass concentration from agitation speed data, a most readily-available process variable, has been developed for DO-stat cultures of Agaricus blazei. The dynamic change of dissolved oxygen concentration (DOC) in the initial transient period and the change in yield were considered in the development of the estimation algorithm or estimator. Parameters in the estimation algorithm were calculated from the agitation speed data at 20% of DOC. The proposed estimator could accurately predict the cell mass concentration regardless of DOC levels in the tested range of $10{\sim}40%$, showing a good extrapolation capability.

A study on the effect of agitation speeds for the optimization of manufacturing process of autonomic microcapsules (자가치료용 마이크로캡슐 제조공정 최적화를 위한 교반속도 영향 연구)

  • Yun, Seong-Ho;Kim, Sang-Deok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.51-59
    • /
    • 2006
  • The physical characteristics of autonomic microcapsules manufactured with various agitation speeds in a stirred tank were observed experimentally by a particle size analyzer and an optical microscope. The flow characteristics in a stirred tank were also investigated through a 3-dimensional numerical simulation to understand the manufacturing process of autonomic microcapsules. According to the results, we found that the agitation speed was the important factor to determine the sizes of microcapsules. The impeller-induced flow allowed the jet and tip-vortex pair components in the mixed fluid of a stirred tank. The vorticity around the blades in the impeller was increased as increasing the agitation speed. In addition, the size of autonomic microcapsules was strongly affected on the small scale mixing pattern such as a tip-vortex pair.

Study on Manufacturing Process Variables affecting on Characteristics of Autonomic Microcapsules (자가치료용 마이크로캡슐 특성에 영향을 미치는 제작공정 연구)

  • 윤성호;박희원;소진호;홍순지;이종근
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.169-172
    • /
    • 2003
  • Manufacturing process for autonomic microcapsules was introduced and autonomic microcapsules were manufactured by varying with various manufacturing process variables. Urea-formaldehyde resin was used for the wall of microcapsules and DCPD (dicyclopentadiene) was used for the self-healing agent. The characteristics of these microcapsules was evaluated through a particle size analyaer, an optical microscope, and a TGA. The various manufacturing process variables, such as pH and agitation speed of the emulsified solution, were considered to focus in this study. According to the results, the particle size distributions were affected on the agitation speed of the emulsified solution, and the thermal stability was influenced by pH of the emulsified solution.

  • PDF

Textile dye wastewater treatment using coriolus versicolor

  • Sathian, S.;Radha, G.;Priya, V. Shanmuga;Rajasimman, M.;Karthikeyan, C.
    • Advances in environmental research
    • /
    • v.1 no.2
    • /
    • pp.153-166
    • /
    • 2012
  • Decolourization potential of white rot fungal organism, coriolus versicolor, was investigated in a batch reactor, for textile dye industry wastewater. The influence of process parameters like pH, temperature, agitation speed and dye wastewater concentration on the decolourization of textile dye wastewater was examined by using Response surface methodology (RSM). The maximum decolourization was attained at: pH- 6.8, temperature - $27.9^{\circ}C$, agitation speed - 160 rpm and dye wastewater concentration - 1:2. From the analysis of variance (ANOVA) results it was found that, the linear effect of agitation speed and dye wastewater concentration were significant for the decolourization of textile dye wastewater. At these optimized condition, the maximum decolourization and chemical oxygen demand (COD) reduction was found to be 64.4% and 79.8% respectively. Various external carbon sources were tried to enhance the decolourization of textile dye wastewater. It was observed that the addition of carbon source enhances the decolourization of textile dye wastewater. Kinetics of textile dye degradation process was studied by first order and diffusional model. From the results it was found that the degradation follows first order model with $R^2$ value of 0.9430.

A Study on the Composting of the Brewery and Nightsoil Mixed Sludge I - Influence of mixing ratio and agitation period in composting (맥주 및 분뇨슬러지 혼합물의 퇴비화에 관한 연구 I -혼합 및 교반주기가 퇴비화에 미치는 영향-)

  • 박종혁;김동수
    • Resources Recycling
    • /
    • v.8 no.4
    • /
    • pp.39-44
    • /
    • 1999
  • Nightsoil and brewery sludges usually contain a high concentration of organic matters. A composting study using reactors was carried out for the recycle of brewery wastewater sludge and nightsoil treatment sludge, which have been landfilled. A good composting process was obtained with a sludge mixing ratio of 1:1 and injual pH had no effect on temperature increase related to microbial activity. The injtial C/N ratio at approximarely 15 decreased to 13 without the increase in pH.. It was found that agitation of one time a week provided the most effective composting process.

  • PDF