• Title/Summary/Keyword: Aging

Search Result 9,998, Processing Time 0.038 seconds

Aging Behavior of Beeswaxed Hanji(II) - Acidic and Alkaline Aging of Beeswaxed Hanji - (밀랍지의 열화 거동 (제2보) - 산 및 알칼리에 의한 밀랍지의 열화 -)

  • Kim, Kang-Jae;Lee, Min-Hyung;Eom, Tae-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.3
    • /
    • pp.66-72
    • /
    • 2011
  • The annals of Joseon Dynasty is one of UNESCO's Memory of the World Register. For the safety preservation of the waxed annals of Joseon Dynasty, the acidic and alkaline aging mechanism of beeswax and beeswaxed Hanji has been investigated. The weight loss of beeswaxed Hanji by the acidic aging was higher than those of alkaline beeswax. The acid value and relative intensity of carbonyl groups in beeswax were slowly increased with aging time. The strength of dewaxed Hanji was decreased with aging time. The significant changes of crystallinity of dewaxed Hanji by acidic and alkaline aging were not observed.

Analysis of Aging Phenomena in Nanomneter MOSFET Power Gating Structure (나노미터 MOSFET 파워 게이팅 구조의 노화 현상 분석)

  • Lee, Jinkyung;Kim, Kyung Ki
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.292-296
    • /
    • 2017
  • It has become ever harder to design reliable circuits with each nanometer technology node under normal operation conditions, a transistor device can be affected by various aging effects resulting in performance degradation and eventually design failure. The reliability (aging) effect has traditionally been the area of process engineers. However, in the future, even the smallest of variations can slow down a transistor's switching speed, and an aging device may not perform adequately at a very low voltage. Because of such dilemmas, the transistor aging is emerging as a circuit designer's problem. Therefore, in this paper, the impact of aging effects on the delay and power dissipation of digital circuits by using nanomneter MOSFET power gating structure has been analyzed.. Based on this analyzed aging models, a reliable digital circuits can be designed.

A Scan-Based On-Line Aging Monitoring Scheme

  • Yi, Hyunbean;Yoneda, Tomokazu;Inoue, Michiko
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.1
    • /
    • pp.124-130
    • /
    • 2014
  • In highly reliable and durable systems, failures due to aging might result in catastrophes. Aging monitoring techniques to prevent catastrophes by predicting such a failure are required. This paper presents a scan-based on-line aging monitoring scheme which monitors aging during normal operation and gives an alarm if aging is detected so that the system users take action before a failure occurs. We illustrate our modified scan chain architecture and aging monitoring control method. Experimental results show our simulation results to verify the functions of the proposed scheme.

The soma-germline communication: implications for somatic and reproductive aging

  • Gaddy, Matthew A.;Kuang, Swana;Alfhili, Mohammad A.;Lee, Myon Hee
    • BMB Reports
    • /
    • v.54 no.5
    • /
    • pp.253-259
    • /
    • 2021
  • Aging is characterized by a functional decline in most physiological processes, including alterations in cellular metabolism and defense mechanisms. Increasing evidence suggests that caloric restriction extends longevity and retards age-related diseases at least in part by reducing metabolic rate and oxidative stress in a variety of species, including yeast, worms, flies, and mice. Moreover, recent studies in invertebrates - worms and flies, highlight the intricate interrelation between reproductive longevity and somatic aging (known as disposable soma theory of aging), which appears to be conserved in vertebrates. This review is specifically focused on how the reproductive system modulates somatic aging and vice versa in genetic model systems. Since many signaling pathways governing the aging process are evolutionarily conserved, similar mechanisms may be involved in controlling soma and reproductive aging in vertebrates.

The role of tRNA-derived small RNAs in aging

  • Seokjun G. Ha;Seung-Jae V. Lee
    • BMB Reports
    • /
    • v.56 no.2
    • /
    • pp.49-55
    • /
    • 2023
  • Aging is characterized by a gradual decline in biological functions, leading to the increased probability of diseases and deaths in organisms. Previous studies have identified biological factors that modulate aging and lifespan, including non-coding RNAs (ncRNAs). Here, we review the relationship between aging and tRNA-derived small RNAs (tsRNAs), ncRNAs that are generated from the cleavage of tRNAs. We describe age-dependent changes in tsRNA levels and their functions in age-related diseases, such as cancer and neurodegenerative diseases. We also discuss the association of tsRNAs with aging-regulating processes, including mitochondrial respiration and reduced mRNA translation. We cover recent findings regarding the potential roles of tsRNAs in cellular senescence, a major cause of organismal aging. Overall, our review will provide useful information for understanding the roles of tsRNAs in aging and age-associated diseases.

Multiple Aging Trajectories of the Elderly in Korea (한국 노인의 노화궤적 연구)

  • Kim, Sojin
    • 한국노년학
    • /
    • v.39 no.1
    • /
    • pp.37-60
    • /
    • 2019
  • This study was attempt to derive the aging trajectories of Korean elderly people and identify its characteristics. In particular, this study used the successful aging model of Rowe and Kahn as an analytical framework. Using the Korean Longitudinal Study of Ageing(KLoSA), this study applied group-based multi-trajectory analysis to identify multiple aging trajectories in sample of Korean elder aged 65~74(n=2,682). This study also used several demographic characteristics as baseline predictors to identify the characteristics of each aging trajectory. Five dimensions were analyzed in the multi-trajectory model: chronic disease, physical functional limitation, cognitive functioning, depressive symptom and social engagement. As a result of the analysis, five aging trajectories were identified: successful aging(17.8%), usual aging (33.9%), health declining aging(18.2%), pathological aging(7.9%), and aging with mild cognitive impairment(22.1%). In general, the odds of experiencing successful aging were high in men, low-aged, highly educated, high-income, and spousal elderly. On the other hand, for the elderly, who are under-educated, low-income, and high-aged, there was a high probability of experiencing a relatively difficult aging process. In particular, the odds of experiencing a mild cognitive impairment aging was high in older, lower-income women without a spouse.

Effects of aging and freezing/thawing sequence on quality attributes of bovine Mm. gluteus medius and biceps femoris

  • Kim, Hyun-Wook;Kim, Yuan H. Brad
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.2
    • /
    • pp.254-261
    • /
    • 2017
  • Objective: The effects of aging and freezing/thawing sequence on color, physicochemical, and enzymatic characteristics of two beef muscles (Mm. gluteus medius, GM and biceps femoris, BF) were evaluated. Methods: Beef muscles at 3 d postmortem were assigned to four different combinations of aging and freezing/thawing sequence as follows; aging at $2^{\circ}C$ for 3 wk (A3, never-frozen control), freezing at $-28^{\circ}C$ for 2 wk then thawing (F2, frozen/thawed-only), aging at $2^{\circ}C$ for 3 wk, freezing at $-28^{\circ}C$ for 2 wk then thawing (A3F2), and freezing at $-28^{\circ}C$ for 2 wk, thawing then further aging at $2^{\circ}C$ for 3 wk (F2A3). Results: No significant interactions between different aging/freezing/thawing treatments and muscle type on all measurements were found. Postmortem aging, regardless of aging/freezing/thawing sequence, had no impact on color stability of frozen/thawed beef muscles (p<0.05). F2A3 resulted in higher purge loss than F2 and A3F2 treatments (p<0.05). A3F2 and F2A3 treatments resulted in lower shear force of beef muscles compared to F2 (p<0.05). Although there was no significant difference in glutathione peroxidase (GSH-Px) activity, F2A3 had the highest ${\beta}-N-acetyl$ glucominidase (BNAG) activity in purge, but the lowest BNAG activity in muscle (p<0.05). GM muscle exhibited higher total color changes and purge loss, and lower GSH-Px activity than BF muscle. Conclusion: The results from this present study indicate that different combinations of aging/freezing/thawing sequence would result in considerable impacts on meat quality attributes, particularly thaw/purge loss and tenderness. Developing a novel freezing strategy combined with postmortem aging will be beneficial for the food/meat industry to maximize its positive impacts on tenderness, while minimizing thaw/purge loss of frozen/thawed meat.

Dynamic Rheological Properties of Hydroxypropylated Rice Starches during the Aging Process (Aging 과정 중 하드록시프로필화 쌀전분의 동적 레올로지 특성)

  • Choi, Hye-Mi;Yoo, Byoung-Seung
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.5
    • /
    • pp.584-587
    • /
    • 2007
  • The effect of molar substitution (MS, 0.030-0.118) on the dynamic rheological properties of hydroxypropylated rice starch pastes (5%, w/w) was investigated by small-deformation oscillatory measurements during aging. The magnitudes of storage (G#) and loss (G") moduli measured at $4^{\circ}C$ before aging increased with an increase in MS in the range of 0.030-0.118, while those of tan ${\delta}$ (the ratio of G"/G#) decreased. The G# values of hydroxypropylated rice starches, as a function of aging time (10 hr) at $4^{\circ}C$, increased rapidly at the initial stage, and then reached a plateau region at shorter aging times. However, for the native starch, the plateau values were not observed for G# after a long aging time. Increasing the MS resulted in a decrease in plateau values. The rate constant (K) for structure development during aging was described by first-order kinetics. The K values of hydroxypropylated rice starches at 0.086 and 0.118 MS were much lower than the K value at 0.030 MS.

Effect of Thermal Aging on Electrical Properties of Low Density Polyethylene

  • Wang, Can;Xie, Yaoheng;Pan, Hua;Wang, Youyuan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2412-2420
    • /
    • 2018
  • The thermal degradation of low density polyethylene (LDPE) will accelerate the production of carbonyl groups (C=O), which can act as the induced dipoles under high voltage. In this paper, we researched the dielectric properties and space charge behavior of LDPE after thermal aging, which can help us to understand the correlation between carbonyl groups (C=O) and electrical properties of LDPE. The spectra results show that LDPE exhibit obvious thermooxidative reactions when the aging time is 35 days and the productions mainly contain carboxylic acid, carboxylic eater and carboxylic anhydride, whose amount increase with the increasing of aging time. The dielectric properties show that the real permittivity of LDPE is inversely proportional to temperature before aging and subsequently become proportional to temperature after thermal aging. Furthermore, both the real and imaginary permittivity increase sharply with the increasing of aging time. The fitting results of imaginary permittivity show that DC conductivity become more sensitive about temperature after thermal aging. On this basis, the active energies of materials calculated from DC conductivity increase first and then decrease with the increasing of aging time. In addition, the space charge results show that the heterocharges accumulated near electrodes in LDPE change to the homocharges after thermal aging and the mean volume charge density increase with the increasing of aging time. It is considered that the overlaps caused by electrical potential area is the main reason for the increase of DC conductivity.

Effect of Aging Period on Chromatic, Chemical and Organoleptic Properties of Burley Leaf Tobacco (버어리종 잎담배의 숙성기간이 색상, 화학성분 및 끽미에 미치는 영향)

  • 안대진;정기택;이종률;제병권;조수헌
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.26 no.1
    • /
    • pp.35-42
    • /
    • 2004
  • This study was carried out to examinate the effect of aging period on chromatic, chemical and organoleptic characteristics, and to evaluate of optimum aging period for each grade in burley leaf tobacco. The leaf tobaccos were produced in 2000, and threshed, redried and packed in carton box under the current methods. Four grades of processed leaf(A3T, B1T, C1W and D3W) were stored during 24 months (May 10, 2001 to April 31, 2003) in warehouse of Chungju Leaf Tobacco Processing Factory. The leaf tobaccos were sampled at three month intervals for analysis of chromatic, chemical and organoleptic properties. pH values of four grades, and Yellow(b) of A3T and BIT were also significantly decreased during the aging. Filling values, tar, nicotine and CO contents of tobacco smoke, and puff number of cigarettes were not significantly changed during the aging. Positive correlation coefficients were significantly observed between irritation of the calculated attributes from contents of volatile oil components in leaf tobacco and that of the panel sensory attributes. The ratio of maximum change in irritation attribute was larger than that in taste attribute during aging. The calculated irritations of 18~24 months aging for A3T and B1T were significantly lower than zero-aging, while those of C1W and D3W were not significant among aging periods. The panel irritations of 12~15 months aging for four grades were low tendency. The results suggest that decrease of aging period for thin leaf from 21~24 to 12~15 months may be beneficial to save storage cost in burley tobacco.