• 제목/요약/키워드: Aggressive Cross Efficiency model

검색결과 4건 처리시간 0.017초

순위결정 DEA모형의 변별력 평가 (Evaluation of the performance of the ranking DEA model)

  • 박만희
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 춘계학술대회
    • /
    • pp.298-299
    • /
    • 2018
  • 본 연구에서는 의사결정자의 사전정보가 필요하지 않은 DEA 모형들을 대상으로 변별력 평가를 실시하였다. 변별력 평가를 위한 DEA모형으로 Entropy 모형, Bootstrap 모형, Benevolent Cross Efficiency 모형, Aggressive Cross Efficiency 모형, Game Cross Efficiency 모형을 선정하였다. 변별력 평가척도인 변동계수(coefficient of variation)와 중요도(degree of importance) 평가기준을 이용하여 5개 DEA 모형의 변별력을 평가하였다. 평가결과에 따르면 변별력 순위는 2개 평가 지표 모두에서 Entropy 모형, Aggressive CE 모형, Benevolent CE 모형, Game CE 모형, Bootstrap 모형 순으로 평가되었다.

  • PDF

DEA에서 교차효율성의 공격적 정형화 (An Aggressive Formulation of Cross-efficiency in DEA)

  • 임성묵
    • 한국경영과학회지
    • /
    • 제33권4호
    • /
    • pp.83-100
    • /
    • 2008
  • We propose a new aggressive formulation of cross-efficiency in Data Envelopment Analysis(DEA). In the traditional aggressive formulation, the efficiency score of a test DMU is maximized as the first goal while an average of efficiency scores of peer DMUs is minimized as the second goal. The proposed model replaces the second goal with the minimization of the best efficiency score of peer DMUs. We showed the model is a quasi-convex optimization problem, and for a solution method we developed a bisection method whose computational complexity is polynomial-time. We tested the model on 200 randomly generated DEA problems, and compared it with the traditional model in terms of various criteria. The experimental results confirmed the effectiveness and usefulness of the proposed model.

기업의 운영 효율성과 주식 수익률 성과와의 관계 (Relationship between Firm Efficiency and Stock Price Performance)

  • 임성묵
    • 산업경영시스템학회지
    • /
    • 제41권4호
    • /
    • pp.81-90
    • /
    • 2018
  • Modern investment theory has empirically proved that stock returns can be explained by several factors such as market risk, firm size, and book-to-market ratio. Other unknown factors affecting stock returns are also believed to still exist yet to be found. We believe that one of such factors is the operational efficiency of firms in transforming inputs to outputs, considering the fact that operations is a fundamental and primary function of any type of businesses. To support this belief, this study intends to empirically study the relationship between firm efficiency and stock price performance. Firm efficiency is measured using data envelopment analysis (DEA) with inputs and outputs obtained from financial statements. We employ cross-efficiency evaluation to enhance the discrimination power of DEA with a secondary objective function of aggressive formulation. Using the CAPM-based performance regression model, we test the performance of equally weighted portfolios of different sizes selected based upon DEA cross-efficiency scores along with a buy & hold trading strategy. For the empirical test, we collect financial data of domestic firms listed in KOSPI over the period of 2000~2016 from well-known financial databases. As a result, we find that the porfolios with highly efficient firms included outperform the benchmark market portfolio after controlling for the market risk, which indicates that firm efficiency plays a important role in explaining stock returns.

인공신경망모형(다층퍼셉트론, 방사형기저함수), 사회연결망모형, 타부서치모형을 이용한 컨테이너항만의 클러스터링 측정 및 2단계(Type IV) 교차효율성 메트릭스 군집모형을 이용한 실증적 검증에 관한 연구 (A Study on Containerports Clustering Using Artificial Neural Network(Multilayer Perceptron and Radial Basis Function), Social Network, and Tabu Search Models with Empirical Verification of Clustering Using the Second Stage(Type IV) Cross-Efficiency Matrix Clustering Model)

  • 박노경
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제9권6호
    • /
    • pp.757-772
    • /
    • 2019
  • 본 논문에서는 아시아 38개 컨테이너항만 들을 대상으로 10년(2007년-2016년)동안의 4개의 투입요소(선석길이, 수심, 총면적, 크레인 수)와 1개의 산출요소(컨테이너화물 처리량)를 이용하여 인공신경망모형(다층퍼셉트론, 방사형기저함수)으로 클러스터링에 영향을 미친 요소들을 파악하였으며, 1단계 교차효율성 메트릭스를 이용한 군집 수를 사회연결망모형과 타부서치모형에 적용하여 클러스터링을 파악하고 효율성을 측정하였다. 또한 2단계효율성 메트릭스모형을 이용한 클러스터링을 파악하고 효율성을 측정하여 1단계 교차효율성 메트릭스에 의한 측정결과와 비교하였다. 주요한 실증분석 결과는 다음과 같다. 첫째, 인공신경망모형에 의해서 측정해 보았을 때, 군집에 영향을 많이 미친 요소별로 제시해 보면 컨테이너화물 처리량, 선석길이와 수심, 총면적, 크레인 수의 순서로 나타났다. 둘째, 사회연결망분석에서는 2단계 교차효율성(Type IV)메트릭스에 의한 군집은 benevolent 와 aggressive 모형에서 매년 동일한 결과를 보였다. 셋째, 클러스터링 후에 1단계 교차효율성 모형에 비해서 사회연결망 모형 분석과 타부서치 모형 분석에서 국내항만들의 효율성이 거의(사회연결망 모형에서 인천항의 경우 제외) 악화되는 것으로 나타났다. 다섯째, 일반적인 투입지향, 규모수확불변하의 CCR모형의 효율성 측정결과와 비교했을 때는 클러스터링이 모든 항만들에 대해서 약 37%이상의 효율성을 증대시켰다. 여섯째, 사회연결망모형과 타부서치모형에 의해서 클러스터링 되는 항만들은 부산항(고베, 오사카, 포트클랑, 탄중 펠파스, 마닐라항), 인천항(사히드 라자히, 광양), 광양항(아카바, 포트 슐탄 카바스, 담만, 크호르 파칸, 인천)으로 나타났다. 한국항만당국은 본 연구에서 이용된 방법을 도입하여 항만개선방안을 마련해야만 한다.