• Title/Summary/Keyword: Aggregate Ratio

Search Result 1,123, Processing Time 0.026 seconds

Studies on the Durability of Mortars (모르타르의 내구성에 관한 연구)

  • 고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.11 no.1
    • /
    • pp.1604-1615
    • /
    • 1969
  • This experiment was carried out as one of the basic studies to improve the acid resistance of concrete and it was conducted to investigate some relations among physical properties such as basorption, ratio of water to cement, compressive strength, density and ratio of mix to weight losses of mortar when exposed to 0.1 N solution of hydrochrolic acid. The results obtained from the limited data secured so far in this experiment are summarized as follows: 1. The specimens used in the experiment were made of 5 cubic centimeters of mortar having such various ratios of mix by weight as 1 : 1, 1 : 3, 1 : 5, 1 : 7, 1 : 10. 2. Physical tests included compressive strengths at 7 days, 28 days, 3 months, and 6 month, and 5 hour boiling absorption test. 3. In acid test, every specimen was immersed into 0.1 N solution of hydrochrolic acid. The specimens exposed to the acid solution were weighed to determine the weight losses of the acid-corroded at one week interval for 7 weeks exposure, and the old acid solutions were also changed to fresh one when weighed the weight losses by acid attack at one week interval. 4. The correlative relations were found among physical properties and they are expressed by certain formulas as follows; i) Relation between ratio of mix and absorption Y = 1.036x + 13.53 where Y: absorption(%) X: ratio of mix ii) Relation between ratio of mix and ratio of water-cement Y = 0.204x + 0.214 where Y: ratio of water-cement. X: ratio of mix iii) Relation between ratio of water-cement and absorption Y = 5.01x + 12.53 where Y: absorption(%). X: ratio of water-cement iv) Relation between density and absorption Y = 50.6 - 0.0176X where Y: absorption(%). X: density($kg/m^3$) v) Relation between density and ratio of water cement Y = 7.2183 - 0.0033X where Y: ratio of water-cement . X: density($kg/m^3$) 5. After completing the acid exposure test the specimens were corroded and , the per cent ranges of weight losses varies from a minimum of 20.4 per cent at a 1 : 1 mix to a maximum of 92.0 per cent at a 1:10 mix 6. The correlative relations of physical properties of mortar to weight losses by acid attak were found and they are also expressed by certain formulas as follows: i) Relation between weight losses and ratio of mix Y = 8.59X + 8.63 where Y: weight losses(%), X: ratio of mix ii) Relation between wieght losses and absorption Y = 0.121x + 12.43 where Y: absorption(%). X: weight losses(%) iii) Relation between weight losses and ratio of w/c Y = 0.0226X + 0.07 where Y: ratio of w/c X: weight losses(%) iv) Relation between weight losses and compressive strength LogY = 3.6097 - 0.05058X + 0.00022$X^2$ where Y: compressive strength ($kg/cm^3$) X: weight losses(%) v) Relation between weight losses and density Y = 2153.1 - 6.62X where Y: density($kg/m^3$) X: weigh losses(%) 7. In order to make better acid resistant mortar, it could be concluded that a 1 : 3 mix or richer mixes, adequate mixing water to minnimize the ratio of water-cement considering the workability, 16 per cent or less absorption by 5 hour boiling water, 1,800 kilogram per cubic meter or denser density by absolute weight base and 200 kilogram per square meter or compressive strength at 20 day, etc are required so as to obtain acid-resistant mortar. In addition to the above, it might be recommonded to select the fine aggregate and to use better equipments such as a mechanical vibrator, a mechanical mixer etc. in concrete manufacturing works.

  • PDF

Comparative analysis of medicinal expenditure archives in Korean medicine : Focusing on survey methods and expenditure of Korean medicine clinics in 2012 (한의의료비 자료원의 비교 분석 연구 : 조사 방법 및 2012년 한의원 의료비를 중심으로)

  • Kim, Dongsu;Chong, Myongsoo;Lee, Eunkyoung;Ko, Seong-Gyu
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.19 no.2
    • /
    • pp.37-50
    • /
    • 2015
  • Objective : In order to understand the scale of medicinal expenditure in the Korean medicine, an analysis has been made of Korean National Health Account and statistic archives used to estimate the Korean National Health Account and also of such archives as are contributory to learn the scale of total health expenditures in the Korean medicine. Method : From the Korean National Health Account archives, an analysis has been made of National health insurance statistic annual reports, National health insurance non-payment items, Korean Economic Census (The Service Industy Survey), and Korea Health Panel data. Moreover, in order to know the sales of overall Korean medicine clinics, relevant data have been utilized and cited from investigations into National tax statistics, Korean medicine medical institutions and Korean medicines used, and current states of medicinal herbs and Korean medicine industry. Results : It is found that the average scale of each section of the medical expenditures archives in the Korean medicine in 2012 was KRW 3.5638 billion and that the average medical expenditures in the Korean medicine derived from Total Health Expenditure, The Service Industy Survey, National tax statistic, and Korean medicine industry are approximately KRW 3.3901, 3.4796, 3.7218 and 3.9634 billion. And the average expenditures derived from National health insurance patients and Korea Health Panel data are 2.5162 and 2.2292 billion won and those from the users and consumers of Korean medicines and herbs are 5.6,461 billion won. In order to verify the appropriateness of estimated medical expenditures in the Korean medicine included in the archives, an analysis has been made of uninsured costs which come from the aggregate sales amount surveyed minus health insurance treatment expenditures and it is found that the ratio of insured costs against total health expenditures in 2006 was 50.67% and 41.92% in 2012 and that the ratio based on National tax statistics and The Service Industy Survey was 52.19% and 49.28% in 2006 and 50.54% and 50.64% in 2012 and that the ratio of uninsured costs against Korean medicines and herbs and Korean medicine industry was 37.5% and 58.27% in 2013. Conclusion : It calls for the improvement of the accuracy of an investigation into Total Health Expenditure which comprise the actual conditions of health insurance and Korea Health Panel, the development of statistic schemes for understanding and classifying medical expenditures of all the Korean medicine medicinal institutions like medicinal clinics, and enhanced methods for independent panels to comprehensively collect and analyze the number of sampled Korean medicine medical institutions.

Structural Performance Evaluation of Steel Fiber-Reinforced Concrete Beams with Recycled Coarse Aggregates (순환골재를 사용한 강섬유보강 콘크리트보의 구조 성능 평가)

  • Shin, Jae-Lin;Kim, Woo-Suk;Baek, Seung-Min;Kang, Thomas H.-K.;Kwak, Yoon-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.215-227
    • /
    • 2015
  • In this study, twenty four steel-fiber reinforced concrete (SFRC) beams using recycled coarse aggregates (RCA) were manufactured to examine the shear behavior of SFRC and to determine the beams' ultimate shear strengths. The RCA replacement ratio was fixed at 30%. The variables studied in this investigation are: (1) shear span-to-depth ratios (a/d) of 2, 3 and 4; (2) longitudinal reinforcement ratio (${\rho}$) of 0.008 and 0.0127; and (3) steel fiber volume fractions ($V_f$) of 0, 0.5, 0.75 and 1%. Test results were analyzed and then compared with the findings and proposals of various other researchers. Based on the test results, the more steel fiber volume fraction is increased, the large crack resistance and shear strength are exhibited. Most of the experimental data is higher than the theoretical value. Therefore, steel-fiber reinforced concrete beams using recycled coarse aggregates are suggested to be applied for building structures.

An Equivalent Multi-Phase Similitude Law for Pseudodynamic Test on Small-scale RC Models (RC 축소모형의 유사동적실험을 위한 Equivalent Multi-Phase Similitude Law)

  • ;;;Guo, Xun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.101-108
    • /
    • 2003
  • Small-scale models have been frequently used for experimental evaluation of seismic performance because of limited testing facilities and economic reasons. However, there are not enough studies on similitude law for analogizing prototype structures accurately with small-scale models, although conventional similitude law based on geometry is not well consistent in the inelastic seismic behavior. When fabricating prototype and small-scale model of reinforced concrete structures by using the same material. added mass is demanded from a volumetric change and scale factor could be limited due to size of aggregate. Therefore, it is desirable that different material is used for small-scale models. Thus, a modified similitude law could be derived depending on geometric scale factor and equivalent modulus ratio. In this study, compressive strength tests are conducted to analyze equivalent modulus ratio of micro-concrete to normal-concrete. Equivalent modulus ratios are divided into multi phases, which are based on ultimate strain level. Therefore, an algorithm adaptable to the pseudodynamic test. considering equivalent multi-phase similitude law based on seismic damage levels, is developed. In addition, prior to the experiment. it is verified numerically if the algorithm is applicable to the pseudodynamic test.

Field Applicability Evaluation of SB Latex-Modified Concrete for Concrete Bridge Deck Overlay (콘크리트 교면 덧씌우기를 위한 SB 라텍스개질 콘크리트의 현장적용성 평가)

  • Yun, Kyong-Ku;Lee, Joo-Hyung;Hong, Chang-Woo;Kim, Ki-Hyun;Kim, Tae-Kyong
    • International Journal of Highway Engineering
    • /
    • v.3 no.4 s.10
    • /
    • pp.93-103
    • /
    • 2001
  • This study focused on the field applicability evaluation of SB latex-modified concrete (LMC) for concrete bridge deck overlay using mobile mixer. The main experimental factors were water-cement ratio(31, 33, 35 37%), latex contents(0, 5, 10, 15, 20%), and fine aggregate ratio(55, 56, 57, 58%) in order to evaluate the workability, mechanical properties, and durability property of LMC. The slump loss, air content, compressive and flexible strength tests were used to evaluate LMC workability and strength properties. Also, the rapid chloride permeability test was used to evaluate the relative permeability of LMC. As a results, the LMC with enough workability and good quality was produced when it was mixed in field using mobile mixer, satisfying the target compressive strength and flexural strength. The required water-cement ratio of LMC for same workability when mixing with mobile mixer was less than that when mixing in laboratory. Increasing the amount of latex produced concrete with increased flexural strength by mobile mixer. The required cement-water ratios for same initial $19{\pm}3cm$ slump were 37% and 33% at laboratory and mobile mixer, respectively. The mobile mixer was accurately calibrated satisfying the required specification.

  • PDF

Adhesive Properties of High Flowable SBR-modified Mortar for Concrete Patching Material Dependent on Surface Water Ratio of Concrete Substrate (콘크리트 피착체의 표면수율에 따른 단면복구용 고유동성 SBR 개질 모르타르의 부착특성)

  • Do, Jeong Yun;Kim, Doo Kie
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.124-134
    • /
    • 2013
  • This study investigated the effect of surface water on concrete substrate on adhesive strength in tension of very high flowable SBR-modified cement mortar. The specimens were prepared with proportionally mixing SBR latex, ordinary portland cement, silica sand, superplasticizer and viscosity enhancing agent. Polymer cement ratio (P/C) were 10, 20, 30, 50 and 75% and the weight ratio of fine aggregate to cement were 1:1 and 1:3. The specimens obtained with different P/C and C:F were characterized by unit weight, flow test, crack resistance and adhesion test. After basic tests, two mixtures of P/C=20% and 30% in case of C:F=1:1, and one mixture of P/C=50% in case of C:F=1:3 were selected, respectively. These three selected specimens were studied about the effect of surface water evenly sprayed on concrete substrate by a amount of 0, 0.006, 0.012, 0.017, 0.024g per unit area ($cm^2$) of concrete substrate surface The results show that surface water on concrete substrate increases the adhesive strength in tension of high flowable SBR-modified cement mortar and improve the flowability compared to the non-sprayed case.

Study on the Thermal Characteristics of Concrete Using Micro Form Admixture (마이크로기포제를 사용한 콘크리트의 열적 특성에 관한 연구)

  • Park, Young Shin;Kim, Jung Ho;Jeon, Hyun Kyu;Seo, Chee Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.101-109
    • /
    • 2013
  • Recently, it is certain that the increase of heating and cooling energy consumption by radical change in climate condition has caused serious problems related to environmental and energy concerns associated with increase of fossil fuel usage and carbon dioxide production as well as global warming. So, various actions to reduce greenhouse gas exhaustion and energy consumption have been prepared by world developed countries. Our government has also been trying to seek energy control methods for houses and buildings by proclaiming political polices on low-carbon green growth and construction and performance standards for environment-friendly housing. The energy consumption by buildings approximately reaches 25% of total korea energy consumption, and the increasing rate of energy consumption by buildings is stiffer than the rate by the other industries. The greatest part in the buildings of the energy consumption is building facade. While lots of research projects for reducing energy consumption of the facade have been conducted, but a few research projects on concrete comprising more than 70% of outsider of buildings has been tried. This research presents here a study to improve the insulation property of structural concrete formed by micro form admixture (MFA) with experimentally reviewing the physical, mechanical and thermal characteristics of the concrete. As the results of this experiment, in the case of concrete mixed with MFA, slump loss has been improved. As the mixing ratio of MFA increases, the compressive strength is decreased and thermal conductivity is increased. Also it was found that water-cement ratio increases, the compressive strength is decreased and thermal conductivity is increased. but, there was not big influence by the change of fine aggregate ratio.

Mechanical Properties of Concrete Using Recycled Coarse Aggregate from Nuclear Power Plant Simulated Concrete (원자력발전소 모의 콘크리트로부터 생산된 순환 굵은 골재 활용 콘크리트 역학적 특성)

  • Lee, Seong-Cheol;Shin, Kyung-Joon;Kim, Chang-Lak
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.2
    • /
    • pp.167-174
    • /
    • 2020
  • Many researches have been conducted to utilize recycled aggregates in Korea, but since most sources of recycled aggregates are not clear, there is a lot of uncertainty in applying the existing research results on recycle of aggregates generated from nuclear power plants. In this study, therefore, in order to investigate the possibility of recycling coarse aggregates generated through dismantling of nuclear power plants in Korea, recycled coarse aggregates were produced from concrete simulating nuclear power plants in Korea. Using the recycled coarse aggregates, concrete was mixed in consideration of the mixing ratio of the recycled coarse aggregates, and the mechanical properties were experimentally investigated. From the test results, as the mixing ratio of recycled coarse aggregates increased. concrete compressive strength, tensile strength, and elastic modulus generally decreased up to 36, 37, and 27% from the mechanical properties of normal concrete, respectively. Therefore, it can be concluded that limitation on the mixing ratio of recycled coarse aggregates is necessary when coarse aggregates are recycled through dismantling of nuclear power plants.

Seismic damage evaluation of steel reinforced recycled concrete filled circular steel tube composite columns

  • Hui, Ma;Xiyang, Liu;Yunchong, Chen;Yanli, Zhao
    • Earthquakes and Structures
    • /
    • v.23 no.5
    • /
    • pp.445-462
    • /
    • 2022
  • To investigate and evaluate the seismic damage behaviors of steel reinforced recycled concrete (SRRC) filled circular steel tube composite columns, in this study, the cyclic loading tests of 11 composite columns was carried out by using the load-displacement joint control method. The seismic damage process, hysteretic curves and performance indexes of composite columns were observed and obtained. The effects of replacement rates of recycled coarse aggregate (RCA), diameter thickness ratio, axial compression ratio, profile steel ratio and section form of profile steel on the seismic damage behaviors of composite columns were also analyzed in detail. The results show that the failure model of columns is a typical bending failure under the combined action of horizontal loads and vertical loads, and the columns have good energy dissipation capacity and ductility. In addition, the replacement rates of RCA have a certain adverse effect on the seismic bearing capacity, energy consumption and ductility of columns. The seismic damage characteristics of composite columns are revealed according to the failure modes and hysteretic curves. A modified Park-Ang seismic damage model based on the maximum displacement and cumulative energy consumption was proposed, which can consider the adverse effect of RAC on the seismic damage of columns. On this basis, the performance levels of composite columns are divided into five categories, The interlayer displacement angle and damage index are used as the damage quantitative indicators of composite columns, and the displacement angle limits of composite columns at different performance levels under 80% assurance rate are calculated as 1/105, 1/85, 1/65, 1/28, and 1/25 respectively. On this basis, the damage index limits corresponding to each performance level are calculated as 0.045, 0.1, 0.48, 0.8, and 1.0 respectively. Finally, the corresponding relations among the performance levels, damage degrees, interlayer displacement angles and damage indexes of composite columns are established. The conclusions can provide reference for the seismic design of SRRC filled circular steel tube composite columns, it fills the vacancy in the research on seismic damage of steel reinforced recycled concrete (SRRC) filled circular steel tube composite columns.

The CH3CHO Removal Characteristics of Lightweight Aggregate Concrete with TiO2 Spreaded by Low Temperature Firing using Sol-gel Method (Sol-gel법으로 이산화티탄(TiO2)을 저온소성 도포시킨 경량골재콘크리트의 아세트알데히드(CH3CHO) 제거 특성)

  • Lee, Seung Han;Yeo, In Dong;Jung, Yong Wook;Jang, Suk Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2A
    • /
    • pp.129-136
    • /
    • 2011
  • Recently studies on functional concrete with a photocatalytic material such as $TiO_2$ have actively been carried out in order to remove air pollutants. The absorbtion of $TiO_2$ from those studies is applied by it being directly mixed into concrete or by suspension coated on the surface. When it comes to the effectiveness, the former process is less than that of the latter compared with the $TiO_2$ use. As a result, the direct coating of $TiO_2$ on materials' surface is more used for effectiveness. The Surface spread of it needs to have a more than $400^{\circ}C$ heat treat done to stimulate the activation and adhesion of photocatalysis. Heat treat consequently leads hydration products in concrete to be dehydrated and shrunk and is the cause of cracking. The study produces $TiO_2$ used Sol-gel method which enables it to be coated with a low temperature treat, applies it to pearlite using Lightweight Aggregate Concrete fixed with a low temperature treat and evaluates the spread performance of it. In addition to this, the size of pearlite is divided into two types: One is 2.5 mm to 5.0 mm and the other is more than 5.0 mm for the benefit of finding out the removal characteristics of $CH_3CHO$ whether they are affected by pearlite size, mixing method and ratio with $TiO_2$ and elapsed time. The result of this experiment shows that although $TiO_2$ produced by Sol-gel method is treated with 120 temperature, it maintains a high spread rate on the XRF(X ray Florescence) quantitative analysis which ranks $TiO_2$ 38 percent, $SiO_2$ 29 percent and CaO 18 percent. In the size of perlite from 2.5 mm to 5.0 mm, the removal characteristic of $CH_3CHO$ from a low temperature heated Lightweight concrete appears 20 percent higher when $TiO_2$ with Sol-gel method is spreaded on the 7 percent of surface. In other words, the removal rate is 94 percent compared with the 72 percent where $TiO_2$ is mixed in 10 percent surface. In more than 5.0 mm sized perlite, the removal rate of $CH_3CHO$, when $TiO_2$ is mixed with 10 percent, is 69 percent, which is similar with that of the previous case. It suggests that the size of pearlite has little effects on the removal rate of $CH_3CHO$. In terms of Elapsed time, the removal characteristic seems apparent at the early stage, where the average removal rate for the first 10 hours takes up 84 percent compared with that of 20 hours.