• Title/Summary/Keyword: Aggregate Ratio

Search Result 1,129, Processing Time 0.026 seconds

Preliminary Study for Optimum Mix Design of Concrete Incorporating Waste Basalt (현무암을 혼입한 콘크리트의 최적배합설계를 위한 기초적 연구)

  • Jung, Young-Hwa;Kim, Tae-Kyung
    • Journal of Industrial Technology
    • /
    • v.16
    • /
    • pp.39-44
    • /
    • 1996
  • The waste basalt might be recycled in concrete, resulting in energy saving and environmental protection. An half Factorial Experiments were performed with the variables of W/C ratio, S/A, Crushed stone/Basalt ratio and Slump as a preliminary study for optimum mix design of concrete. The results show that the W/C ratio is the most important factor to the concrete strength. The substitute of waste basalt up to 100% has little influence, saying that it can substitute the coarse aggregate without damaging the concrete properties.

  • PDF

Fundamental Properties of Lightweight Polymer-Cement Mortars Using Polystyrene Beads (Polystyrene Beads를 사용한 경량 폴리머 시멘트 모르타르의 기초적 성질)

  • 이기원;신영수;이윤수;황진하
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.327-332
    • /
    • 2000
  • The objective of this study was to improve the defects of lightweight cement concrete by treating with redispersible polymer powders. The statistical relationships of water-cement ratios, contents of lightweight aggregates and polymer powers and be used for predicting the concrete strength. It was found that the varieties and techniques adopted in this experiment were capable of identifying the influence of various tested for air contents, flow test, water absorption, specific gravity, flexural and compressive strength. This study showed that fundamental properties were very affected by cement- lightweight aggregate ratio, polymer-cement ratio and water-cement ratio.

  • PDF

Preliminary Study for Optimum Mix Design of Concrete Incorporation Waste Foundary Sand (폐주물사를 혼입한 콘크리트의 최적 배합설계를 위한 기초적 연구)

  • 백민경;이주형;김태경;윤경구;박제선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.58-63
    • /
    • 1996
  • The waste foundry sand might be recycled in concrete, resulting in energy saving and environmental protection. An half Factorial Exprements were performed with the variables of W/C ratio, S/A, Sand/Waste foundry sand ratio and Slump as a preliminary study for optimum mix design of concrete. The results show that the W/C ratio is the most important factor to the concrete strength. The substitute of waste foundry sand up to 30% has little influence, saying that it can substitute the fine aggregate without damaging the concrete properties.

  • PDF

The Influence of Fineness Modulus of Pine Aggregate and Grain Shape of Coarse Aggregate on the Properties of High Flowing Concrete (잔골재 조립률 및 굵은골재 입형이 초유동 콘크리트의 특성에 미치는 영향)

  • Jung Yong-Wook;Lee Seung-han;Yun Yong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.785-792
    • /
    • 2005
  • This study is to examine the influence of defective grain shape of coarse aggregate and lowered fineness modulus of fine aggregate on the characteristics of high flowing concrete. The flow ability and compact ability of high flowing concrete was examined using fine aggregate, varying its fineness modulus to 2.0, 2.5, 3.0, and 3.5, and coarse aggregate with before and after grain shape improvement. Also the influence of fineness modulus of fine aggregate and grain shape of coarse aggregate on dispersion distance of particles of aggregate was examined by relatively comparing the dispersion distance between particles of aggregate. According to the experimental result, minimum porosity when mixing fine aggregate and coarse aggregate was shown in order of fineness modulus of fine aggregate, 3.0, 2.5, 2.0, 3.5, regardless of the improvement of grain shape. So when the fineness modulus is bigger or smaller than KS Standard $2.3\~3.1$, the porosity increased. When the spherical rate of the grain shape of coarse aggregate unproved from 0.69, a disk shape to 0.78 sphere shape, the rate of fine aggregate, which represents minimum porosity, decreased $6\%$ from $47\%\;to\;41\%$. The 28 days compressive strength according to fineness modulus of fine aggregate increased about 3 ma as the fineness modulus increased from 2.0 to 2,5, and 3.0. However, the 28 days compressive strength decreased about 9 ma at 3.5 fineness modulus as compared with 3.0 fineness modulus. The improvement of grain shape in coarse aggregate and increase of fineness modulus in fine aggregate made the flow ability, compact ability, and V-rod flowing time improve. Also the fineness modulus of fine aggregate increased the paste volume ratio when a higher value was used within the scope of KS Standard $2.3\~3.1$.

Effect of Aggregate Size on the Shear Capacity of Lightweight Concrete Continuous Beams (경량콘크리트 연속보의 전단내력에 대한 골재크기의 영향)

  • Yang, Keun-Hyeok;Mun, Ju-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.669-677
    • /
    • 2009
  • Twenty-four beam specimens were tested to examine the effect of the maximum aggregate size on the shear behavior of lightweight concrete continuous beams. The maximum aggregate size varied from 4 mm to 19 mm and shear span-to-depth ratio was 2.5 and 0.6 in each all-lightweight, sand-lightweight and normal weight concrete groups. The ratio of the normalized shear capacity of lightweight concrete beams to that of the company normal weight concrete beams was also compared with the modification factor specified in ACI 318-05 for lightweight concrete. The microphotograph showed that some unsplitted aggregates were observed in the failure planes of lightweight concrete beams, which contributed to the enhancement of the shear capacity of lightweight concrete beams. As a result, the normalized shear capacity of lightweight concrete continuous beams increased with the increase of the maximum aggregate size, though the increasing rate was lower than that of normal weight concrete continuous beams. The modification factor specified in ACI 318-05 was generally unconservative in the continuous lightweight concrete beams, showing an increase of the unconservatism with the increase of the maximum aggregate size. In addition, the conservatism of the shear provisions of ACI 318-05 was lower in lightweight concrete beams than in normal weight concrete beams.

A Study on the Development Lightweight Aggregate using Clink Ash for Reduction in Freezing Ground (지반의 동결저감 대책기술을 수립하기 위한 클링커애쉬 인공경량골재 개발에 관한 연구)

  • Moon, Jong-Wook
    • Fire Science and Engineering
    • /
    • v.23 no.6
    • /
    • pp.116-125
    • /
    • 2009
  • This study is progressed function ratio, it's trued taste by an experiment to present data for human work light weight aggregate development that use clink ash progressed liquid limit, small success limit, wear loss in quantity, sand equivalent, sieve cutting examination. 80 : 20's match of function rain examination is 1.4, and that use rubble Goljae as ckink ash lightweight aggregate's capacity ratio increases by 1.0 increase of function rain many. Also, examination multiplied delicate flavor gradually according to increase of the mixing rate, and absorption coefficient increased. This is judged by phenomenon that appear by special quality upper clink ash of polystyrene bid and porosity's increase between lightweight aggregate. It is case that use aggregate of wear loss in quantity is 13.5 in sand equivalent and a wear loss in quantity experiment and although case that mix 20% increases by 14.4, this phenomenon by weak tissue of lightweight aggergate be judge. When it's as a these experiment, the statue prevention floor of a street improvement specifications is prescribing so that satisfy by sand equivalent 20, CBR 10. This is showed result that this satisfies in quality standard all in match experiment ago that see.

A Study on the Physical Properties of Recycled Aggregates Using Concrete of Changing Waste Pottery Blain Fineness (폐도자기 분말도 변화에 따른 순환골재 사용 콘크리트의 물리적 특성에 관한 연구)

  • Ryu, Hyun-Gi;Park, Jeong-Min;Joung, Jae-Ho;Kim, Eui-Chang;Yoon, Seung-Joe
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.119-127
    • /
    • 2011
  • Objective of this study is to identify properties on strength increase of hardened concrete and fluidization of non-hardened concrete using waste ceramics generated by construction waste, which is a type of industrial waste, and by ceramics, which is a clay plastic, during its production process, and determine length change ratio caused by drying shrinkage during substitution of recycle aggregate and waste ceramics, and whether they can be used as concrete compounds. Slump of non-hardened concrete exhibited the best fluidization and formability at recycled aggregate's replacement ratio of 60% driven by higher substitution ratio of recycled aggregate and waste ceramics while air content met the KS requirement when substitution ratio of waste ceramics was $4,000cm^2/g$. Compressive strength of hardened concrete exceeded the requirements at early age and standard age and temperature dropped by roughly $6{\sim}10^{\circ}C$ less than the standard at maximum temperature in adiabatic temperature increase, which will hopefully result in stronger durability.

  • PDF

An Experimental Study on Field Application of Self-Compacting Concrete Using Recycled Fine Aggregate (순환잔골재를 혼입한 자기충전 콘크리트의 현장적용을 위한 실험적 연구)

  • Ryou, Jae Suk;Song, Il Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.193-203
    • /
    • 2011
  • The purpose of this study, looking to which the recycled fine aggregates from waste concrete have a lot of problems as a material for structure purpose, is applying the recycled fine aggregate to Self-Compacting Concrete(In the reminder of this paper, it often referred to as SCC) by using the characteristic which the powder containing the recycled fine aggregates can increase strength and liquidity. In this study, that is, the recycled fine aggregate powder is appropriate for developing high strength(over 40 MPa) and liquidity(JSCE 2 grade), the characteristic of the SCC and it was increased the ratio of mixing the recycled fine aggregates emerging from waste concrete and the normal fine aggregates by 25%, making differential in total 5 levels and applied to SCC. After all, this study was reviewed the physical properties of the fresh concrete, analyzed the mechanical properties and durability of the hardening concrete and tried to ensure the possibility of utilizing the recycled fine aggregates as a material for SCC. As a result, this study reached a conclusion that among the 5-level replacement ratios of the physical, mechanical analysis and the durability characteristics, the normal fine aggregates could be applied up to a replacement ratio of 50% more than the recycled fine aggregates and resulted in a deterioration in performance the replacement ratio larger than 50%. It is judged that the applicability of the real structures should be followed up in order to check the possibility of applying the recycled fine aggregates to real life.

Chracteristics of Cement Mortar Mixed with Incinerated Urban Solid Waste (도시 쓰레기 소각재를 혼입한 시멘트 모르타르의 특성)

  • Chang, Chun-Ho
    • Journal of Environmental Science International
    • /
    • v.19 no.5
    • /
    • pp.639-646
    • /
    • 2010
  • Differently from fly ash, the bottom ash produced from incinerated urban solid waste has been treated as an industrial waste matter, and almost reclaimed a tract form the sea. If this waste material is applicable to foam concrete as an fine aggregate, however, it may be worthy of environmental preservation by recycling of waste material as well as reducing self-weight of high-rising structure and long-span bridge. This research has an objective of evaluating the effects of application of bottom ash on the mechanical properties of foam concrete. Thus, the ratio of bottom ash to cement was selected as a variable for experiment and the effect was tested by compression strength, flexural strength, absorption ratio, density, expansion factor. It can be observed from experiments that the application ratios have different effects on the material parameters considered in this experiment, thus major relationship between application ratio and each material parameter were finally introduced. The result of this study can be applied to decide a optimal mix design proportion of foam light-weight concrete while bottom ash is used as an fine aggregate of the concrete.

Axial compression performance of basalt-fiber-reinforced recycled-concrete-filled square steel tubular stub column

  • Zhang, Xianggang;Gao, Xiang;Wang, Xingguo;Meng, Ercong;Wang, Fang
    • Advances in concrete construction
    • /
    • v.10 no.6
    • /
    • pp.559-571
    • /
    • 2020
  • This study aimed to inspect the axial compression mechanical performance of basalt-fiber-reinforced recycled - concrete (BFRRC)-filled square steel tubular stub column. The replacement ratio of recycled coarse aggregate (RCA) and the basalt fiber (BF) dosage were used as variation parameters, and the axial compression performance tests of 15 BFRRC-filled square steel tubular stub column specimens were conducted. The failure mode and the load-displacement/strain curve of the specimen were measured. The working process of the BFRRC-filled square steel tubular stub column was divided into three stages, namely, elastic-elastoplasticity, sudden drawdown, and plasticity. The influence of the design parameters on the peak bearing capacity, energy dissipation performance, and other axial compression performance indexes was discussed. A mathematical model of segmental stiffness degradation was proposed on the basis of the degradation law of combined secant-stiffness under axial compression. The full-process curve equation of axial compressive stress-strain was proposed by introducing the influencing factors, including the RCA replacement ratio and the BF dosage, and the calculated curve agreed well with the test-measured curve.