• 제목/요약/키워드: Aggregate Ratio

Search Result 1,129, Processing Time 0.029 seconds

The photo-removal characteristic of VOCs by photocatalyst/scoria/loess concrete (광촉매가 첨가된 스코리아/황토/콘크리트의 VOCs 제거특성)

  • Ko, Seong-Hyun;Lee, Jae-Hoon;Hong, Chong-Hyun;Ryu, Seong-Phil;Kim, Moon-Hoon;Moon, Kyung-Jong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.585-588
    • /
    • 2006
  • The environment-friendly building material, photocatalyst/scoria/loess concrete, was prepared using scoria and loess (which have merits as building materials) and photocatalyst (which has the functions to compose the environmental contaminants and of self cleaning). In order to apply this material as a building material, the compressive and flexible strengths, and water absorptivity (which have been set by Korea Industrial Standard) were measured. The optimum mixing ratio of photocatalyst/scoria/loess concrete was obtained at the condition of $393kg/m^3$ of coarse aggregate, $802kg/m^3$ of fine aggregate in case of scoria, $80kg/m^3$ of loess, $12kg/m^3$ of photocatalyst, $400kg/m^3$ of cement, and $2kg/m^3$ of AE water reducing agent. The photocatalyst/scoria/loess concrete prepared by above mixing ratio of raw materials showed 25 MPa of compressive strength, $3.8{\sim}4.6$ MPa of flexible strength and $11.4{\sim}12.0%$ of water absorptivity, indicating that the quality of this material was suitable for Korea Industrial Standard (more than 21 MPa for compressive strength, more than 2.0 MPa for flexible strength in case of lightweight aggregate, and less than 15 % for water absorptivity in case of clay brick) for using as a building material.

  • PDF

An Experimental Study on the Properties of the High Strength Crushed Sand Concrete Using Blast-Furnace Slag (고로슬래그를 사용한 고강도 부순모래 경화콘크리트의 물성에 관한 실험적 연구)

  • Choi, Young-Wha;Kim, Jong-In
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.8 no.3
    • /
    • pp.169-176
    • /
    • 2005
  • The purpose of this study is to develop the high strength crushed sand concrete in conditions of water binder ratios of 25, 30, 35% and blast-furnace slag substitutions of 0, 15, 30, 45%. Additionally, in case of water binder ratio of 30%, the maximum size of coarse aggregate is two kinds of 13, 19 mm. The conclusions of this study are as follows ; 1. The compressive strength appeared lower in early age as compared with that of plain concrete according to increasing of the blast-furnace slag substitution. But, the compressive strength was respectively 5, 6, 10% larger than that of plain concrete in case of 25, 30, 35% water binder ratios, 28 days, 30% blast-furnace slag substitution and 19mm coarse aggregate. 2. According to increasing of the blast-furnace slag substitution, the modulus of elasticity and the tensile strength of concrete increased. 3. The length change by the shrinkage increased when the larger coarse aggregate was used, and decreased according to higher blast-furnace slag substitution.

  • PDF

An Experimental Study on the Properties of Lightweight Foamed Concrete According to the Replacement Ratio and Particle Size of Waste Concrete Powder (폐콘크리트 미분말 대체율 변화와 입도 변화에 따른 경량기포콘크리트의 특성에 관한 실험적 연구)

  • Lee, Dae Geun;Han, Sang Il;Park, Hyo Jin;Kang, Cheol;Kang, Ki Woong;Kim, Jin Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.121-125
    • /
    • 2009
  • The recycling of waste concrete is increasing for the environment protection and the shortage of aggregate according to the large scale construction project in Korea. The more manufacturing high quality recycled aggregate is produced, the more waste concrete powder generated from the manufacture process of recycled aggregate, and the consideration about the recycling of waste concrete powder is need. Waste concrete powder was used for the partial replacement of silica powder, which is a main raw material for the manufacture of autoclave foamed concrete. According to the results of research, the slurry density, flow, compressive strength mainly depend on the replacement ratio of particle size and waste concrete powder. At the SEM analysis, the more high-waste concrete powder was the less there are generated tobermorite. But we conclude that it is possible to replace WCP as silica source in the manufacture of the lightweight foamed concrete.

  • PDF

Optimizing the mix design of pervious concrete based on properties and unit cost

  • Taheri, Bahram M.;Ramezanianpour, Amir M.
    • Advances in concrete construction
    • /
    • v.11 no.4
    • /
    • pp.285-298
    • /
    • 2021
  • This study focused on experimental evaluation of mechanical properties of pervious concrete mixtures with the aim of achieving higher values of strength while considering the associated costs. The effectiveness of key parameters, including cement content, water to cement ratio (W/C), aggregate to cement ratio (A/C), and sand replacement was statistically analyzed using paired-samples t-test, Taguchi method and one-way ANOVA. Taguchi analysis determined that in general, the role of W/C was more significant in increasing strength, both compressive and flexural, than cement content and A/C. It was found that increase in replacing percent of coarse aggregate with sand could undermine specimens to percolate water, though one-way ANOVA analysis determined statistically significant increases in values of strength of mixtures. Cost analysis revealed that higher strengths did not necessarily correspond to higher costs; in addition, increasing the cement content was not an appropriate scenario to optimize both strength and cost. In order to obtain the optimal values, response surface method (RSM) was carried out. RSM optimization helped to find out that W/C of 0.40, A/C of 4.0, cement content of about 330 kg/m3 and replacing about 12% of coarse aggregate with sand could result in the best values for strength and cost while maintaining adequate permeability.

Quadrilateral RAC filled FRP tubes: Compressive behavior, design and finite element models

  • Ming-Xiang Xiong;Xuchi Chen;Fengming Ren
    • Steel and Composite Structures
    • /
    • v.48 no.5
    • /
    • pp.485-498
    • /
    • 2023
  • The need for carbon neutrality in the world strives the construction industry to reduce the use of construction materials. Aiming to this, recycled aggregate concrete (RAC) could be used as it reduces the carbon dioxide emissions. Currently, RAC is mainly used in non-structural members of civil constructions, seldom used in structural members. To broaden its structural use, a new type of composite column, i.e., the square and rectangular RAC filled FRP tubes (CFFTs), has been concerned in this study. The investigation on their axial compressive behavior through physical test and numerical analysis demonstrated that the load-carrying capacity of such column is reduced with the increase of replacement ratio of recycled aggregate and aspect ratio of section but can be improved by the increase of FRP confining stiffness and corner radius, said capacity can be equivalent to their steel reinforced concrete counterparts. At failure, the hoop strain at corner of tube is unexpectedly smaller than that at flat side of the tube although the FRP tube ruptured at its corner first, revealing a premature failure. Besides, a design-oriented stress-strain model of concrete and an analysis-oriented finite element model are proposed to predict the load-strain response of square and rectangular CFFT columns, which facilitates the engineering use of RAC in load-carrying structural members.

The combined reinforcement to recycled aggregate concrete by circular steel tube and basalt fiber

  • Zhang, Xianggang;Zhang, Songpeng;Chen, Xu;Gao, Xiang;Zhou, Chunheng
    • Computers and Concrete
    • /
    • v.29 no.5
    • /
    • pp.323-334
    • /
    • 2022
  • In order to study the axial compression performance of basalt-fiber reinforced recycled concrete (BFRRC) filled circular steel tubular short columns, the axial compression performance tests of seven short column specimens were conducted to observe the mechanical whole-process and failure mode of the specimens, the load-displacement curves and the load-strain curves of the specimens were obtained, the influence of design parameters on the axial compression performance of BFRRC filled circular steel tubular short columns was analyzed, and a practical mathematical model of stiffness degradation and a feasible stress-strain curve equation for the whole process were suggested. The results show that under the axial compression, the steel tube buckled and the core BFRRC was crushed. The load-axial deformation curves of all specimens show a longer deformation flow amplitude. Compared with the recycled coarse aggregate (RCA) replacement ratio and the basalt fiber dosage, the BFRRC strength has a great influence on the peak bearing capacity of the specimen. The RCA replacement ratio and the BFRRC strength are detrimental to ductility, whereas the basalt fiber dosage is beneficial to ductility.

An Effect on the Properties of High Flowing Concrete by Materials Variations-Focused on Inchon LNG Receiving Terminal #213,214 Tanks- (사용재료의 품질변동이 고유동콘크리트의 특성에 미치는 영향-인천 LNG 인수기지 #213,214-TK를 중심으로-)

  • 권영호;김무한
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.2
    • /
    • pp.99-107
    • /
    • 2000
  • This research investigates experimentally an effect on the properties of the high flowing concrete to be poured in the under-ground slurry wall of Inchon LNG receiving terminal(#213,214-TK) according to variations of concrete materials. Variables for sensitivity test were selected items as followings. 1) Concrete temperature (3cases), 2) Unit water (5cases), 3) Fineness modulus of fine aggregate (5cases), 4) Particle size of lime stone powder (3cases), 5) Replacement ratio of blast-furnace slag (4cases) and 6) Addition ratio of high range water reducing agent (5cases). And fresh conditions of the super flowing concrete should be satisfied with required range including slump flow(65$\pm$5cm), 50cm reaching time of flow(4~10sec), V-lot flowing time(10~ 20sec), U-box height(min. 300mm) and air content(4$\pm$1%). As results for sensitivity test, considered flow-ability, self-compaction and segregation resistance of the high flowing concrete, material variations and conditions of fresh concrete should be satisfied with the range as follwings. 1) Concrete temperature are 10~2$0^{\circ}C$(below 3$0^{\circ}C$), 2) Surface moisture of fine aggregate is within $\pm$ 0.6%, 3) Fineness modulus of fine aggregate is 2.6$\pm$0.2, 4)Replacement ratio of blast-furnace slag is 45~50% and 5) Addition ratio of high range water reducing agent is within 1%. Based on the specification for quality control, we successfully finished concrete pouring on the under-ground slurry wall having 75,000㎥(#213,214-TK) and accumulated real date in site.

An Experimental Study on The Effect of Mixed Sand Used Sea and River Sand as Fine Aggregate of Concrete (해사와 강모래의 혼합재를 사용한 콘크리트에 관한 실험적 연구)

  • 남상일;김문한;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.31-36
    • /
    • 1992
  • This paper, an experimental study on the effect of mixed sand used sea and river as fine aggregate of concrete, is connected with the properties of fresh and hardended concrete and steel corrosion to investigate workability and engineering properties and general steel bar's corrosion of concrete used mixed sand. After analyzing positively fresh and hardenend concrete and ratio of the corrosion area affected by the autoclave cycle, the purpose of this paper is to provide an experimental data developing concrete used mixed sand.

  • PDF

The Fundamental Properties of Mortar Using the Electric Arc Furnace Slag in Chemical Solutions (약품용액에 침지한 전기로슬래그 잔골재 사용 모르터의 기초 물성)

  • 문한영;서정우;윤희경;문재흠
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.683-686
    • /
    • 1998
  • In this paper, we carried out the fundamental experiments on the resistance of chemical attack of mortar using the electric are furnace slag as fine aggregate. The mortar specimens made from the EAF slag as fine aggregate were immersed in four sorts of chemical solutions, and measured to investigate the change of compressive strength and weight. As the results of this study, it was found that compressive strength and weight were increased with incresing replacement ratio of the EAF slag.

  • PDF

A Study on the Fundamental Properties and Application as Cementious Admixture by Heating Temperature of Recycled Powder (재생미분말의 가열온도에 따른 기초물성 및 시멘트혼화재 적용성에 관한 연구)

  • 장종호;김용로;최세진;최희용;김문한;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.635-640
    • /
    • 2001
  • Recently, it has been processed to study about recycled aggregate but a study about using of recycled powder is producted when manufacturing recycled aggregate has not been acted. So in this study on the fundamental properties and application as cementious admixture by heating temperature for mortar properties of recycled powder and sand is obtained like following results. It is judged that application of recycled powder of heat treatment on $600^{\circ}C$ and cement replacement ratio below 10% is available.

  • PDF