• 제목/요약/키워드: Agglomerative clustering algorithms

검색결과 13건 처리시간 0.028초

A detailed analysis of nearby young stellar moving groups

  • Lee, Jinhee
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.63.3-63.3
    • /
    • 2019
  • Nearby young moving groups (NYMGs hereafter) are gravitationally unbound loose young stellar associations located within 100 pc of the Sun. Since NYMGs are crucial laboratories for studying low-mass stars and planets, intensive searches for NYMG members have been performed. For identification of NYMG members, various strategies and methods have been applied. As a result, the reliability of the members in terms of membership is not uniform, which means that a careful membership re-assessment is required. In this study, I developed a NYMG membership probability calculation tool based on Bayesian inference (Bayesian Assessment of Moving Groups: BAMG). For the development of the BAMG tool, I constructed ellipsoidal models for nine NYMGs via iterative and self-consistent processes. Using BAMG, memberships of claimed members in the literature (N~2000) were evaluated, and 35 per cent of members were confirmed as bona fide members of NYMGs. Based on the deficiency of low-mass members appeared in mass function using these bona fide members, low mass members from Gaia DR2 are identified. About 2000 new M dwarf and brown dwarf candidate members were identified. Memberships of ~70 members with RV from Gaia were confirmed, and the additional ~20 members were confirmed via spectroscopic observation. Not relying on previous knowledge about the existence of nine NYMGs, unsupervised machine learning analyses were applied to NYMG members. K-means and Agglomerative Clustering algorithms result in similar trends of grouping. As a result, six previously known groups (TWA, beta-Pic, Carina, Argus, AB Doradus, and Volans-Carina) were rediscovered. Three the other known groups are recognized as well; however, they are combined into two new separate groups (ThOr+Columba and TucHor+Columba).

  • PDF

Underdetermined Blind Source Separation from Time-delayed Mixtures Based on Prior Information Exploitation

  • Zhang, Liangjun;Yang, Jie;Guo, Zhiqiang;Zhou, Yanwei
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권5호
    • /
    • pp.2179-2188
    • /
    • 2015
  • Recently, many researches have been done to solve the challenging problem of Blind Source Separation (BSS) problems in the underdetermined cases, and the “Two-step” method is widely used, which estimates the mixing matrix first and then extracts the sources. To estimate the mixing matrix, conventional algorithms such as Single-Source-Points (SSPs) detection only exploits the sparsity of original signals. This paper proposes a new underdetermined mixing matrix estimation method for time-delayed mixtures based on the receiver prior exploitation. The prior information is extracted from the specific structure of the complex-valued mixing matrix, which is used to derive a special criterion to determine the SSPs. Moreover, after selecting the SSPs, Agglomerative Hierarchical Clustering (AHC) is used to automaticly cluster, suppress, and estimate all the elements of mixing matrix. Finally, a convex-model based subspace method is applied for signal separation. Simulation results show that the proposed algorithm can estimate the mixing matrix and extract the original source signals with higher accuracy especially in low SNR environments, and does not need the number of sources before hand, which is more reliable in the real non-cooperative environment.

시각적 특징을 기반한 샷 클러스터링을 통한 비디오 씬 탐지 기법 (Video Scene Detection using Shot Clustering based on Visual Features)

  • 신동욱;김태환;최중민
    • 지능정보연구
    • /
    • 제18권2호
    • /
    • pp.47-60
    • /
    • 2012
  • 비디오 데이터는 구조화되지 않은 복합 데이터의 형태를 지닌다. 이러한 비디오 데이터의 효율적인 관리 및 검색을 위한 비디오 데이터 구조화의 중요성이 대두되면서 콘텐츠 내 시각적 특징을 기반으로 비디오 씬(scene)을 탐지하고자 하는 연구가 활발히 진행되었다. 기존의 연구들은 주로 색상 정보만을 이용하여 샷(shot) 간의 유사도 평가를 기반한 클러스터링(clustering)을 통해 비디오 씬을 탐지하고자 하였다. 하지만 비디오 데이터의 색상 정보는 노이즈(noise)를 포함하고, 특정 사물의 개입 등으로 인해 급격하게 변화하기 때문에 색상만을 특징으로 고려할 경우, 비디오 샷 혹은 씬에 대한 올바른 식별과 디졸브(dissolve), 페이드(fade), 와이프(wipe)와 같은 화면의 점진적인 전환(gradual transitions) 탐지는 어렵다. 이러한 문제점을 해결하기 위해, 본 논문에서는 프레임(frame)의 컬러 히스토그램과 코너 에지, 그리고 객체 컬러 히스토그램에 해당하는 시각적 특징을 기반으로 동일한 이벤트를 구성하는 의미적으로 유사한 샷의 클러스터링을 통해 비디오 씬을 탐지하는 방법(Scene Detector by using Color histogram, corner Edge and Object color histogram, SDCEO)을 제안한다. SDCEO는 샷 바운더리 식별을 위해 컬러 히스토그램 분석 단계에서 각 프레임의 컬러 히스토그램 정보를 이용하여 1차적으로 연관성 있는 연속된 프레임을 샷 바운더리로 병합한 후, 코너 에지 분석 단계에서 병합된 샷 내 처음과 마지막 프레임의 코너 에지 특징 비교를 통하여 샷 바운더리를 정제하여 최종 샷을 식별한다. 키프레임 추출 단계에서는 샷 내 프레임간 유사도 비교를 통해 모든 프레임과 가장 유사한 프레임을 각 샷을 대표하는 키프레임으로 추출한다. 그 후, 비디오 씬 탐지를 위해, 컬러 히스토그램과 객체 컬러 히스토 그램에 해당하는 프레임의 시각적 특징을 기반으로 상향식 계층 클러스터링 방법을 이용하여 의미적인 연관성을 지니는 샷의 군집화를 통해 비디오 씬을 탐지하는 방법이다. 본 논문에서는 SDCEO의 프로토 타입을 구축하고 3개의 비디오 데이터를 이용한 실험을 통하여 SDCEO의 효율성을 평가하였고 샷 바운더리 식별의 성능의 정확도는 평균 93.3%, 비디오 씬 탐지 성능의 정확도는 평균 83.3%로 만족할만한 성능을 보였다.