• 제목/요약/키워드: Agent's Voice Type

검색결과 5건 처리시간 0.023초

음성 기반 심리상담 에이전트의 활용 가능성 탐색 연구 (Exploring the Applicability of Voice-based Psychological Counseling Agent)

  • 김지근;양현정;이지원
    • 한국콘텐츠학회논문지
    • /
    • 제21권7호
    • /
    • pp.144-156
    • /
    • 2021
  • 본 연구에서는 상담 및 심리치료 분야에서 대화형 에이전트의 활용이 증가하는 가운데, 음성 기반 심리상담 에이전트 설계 시 중요하게 고려해야 하는 요인을 탐색하기 위해 실험 연구를 진행하였다. 이를 위해 실제 심리상담 맥락에서 음성 기반 대화형 에이전트를 구현하여, 20~30대 성인 남녀 48명을 대상으로 상담 대화를 진행하였다. 연구 참여자는 4가지 유형의 에이전트 목소리(청년여성, 청년남성, 중년여성, 중년남성) 중 선호하는 목소리를 선택한 후 대화하였으며, 목소리 선택에 대한 이유, 기분 변화, 에이전트의 특성에 대한 지각, 상담 성과 등을 평가하였다. 연구 결과, 사용자 성별에 따른 에이전트의 목소리 유형 선택은 통계적으로 유의하지 않았다. 그러나 목소리 선택 이유로 '편안함'이 가장 많이 언급됨으로써, 심리상담 에이전트에게 요구되는 목소리 특성이 탐색되었다. 다음으로, 사용자는 에이전트와의 대화 후, 기분이 유의미하게 개선되는 것으로 나타남으로써 심리상담 에이전트의 개입 효과를 확인하였다. 마지막으로, 사용자가 심리상담 에이전트에게 지각하는 특성 중, 전문성과 호감이 상담 성과를 긍정적으로 평가하는데 중요한 요소임이 확인되었다. 본 연구 결과를 바탕으로 심리상담 에이전트의 활용 가능성과 추후 연구에 대한 제언을 제시하였다.

음성 에이전트 상호작용에서 선행 발화가 사용자 경험에 미치는 영향 - 스마트홈 맥락에서 대화 유형 조건을 중심으로 - (The Effect of Preceding Utterance on the User Experience in the Voice Agent Interactions - Focus on the Conversational Types in the Smart Home Context -)

  • 강예슬;나경화;최준호
    • 문화기술의 융합
    • /
    • 제7권1호
    • /
    • pp.620-631
    • /
    • 2021
  • 이 연구는 스마트 홈 환경에서 대화 주제 유형에 따라 음성 에이전트의 선행 발화 방식이 사용자 경험에 미치는 효과를 확인하고자 하였다. 과제 중심적 대화와 관계 중심적 대화의 두 가지 대화 유형을 바탕으로, 스마트 스피커의 발화 방식을 선행 발화와 후행 발화로 구분하여 네 가지 시나리오를 제작하였다. 온라인 실험을 진행하여 총 62명의 참가자를 발화 방식에 따라 두 그룹으로 나누어, 대화 유형의 두 가지 시나리오를 진행하게 하고, 호감도, 심리적 저항감, 지각된 지능의 사용자 경험 요인을 측정하였다. 실험 결과, 대화 유형 중 과제 중심적 대화에서 호감도의 주효과가 나타났고, 발화 방식에서 선행 발화에 대한 심리적 저항감의 주효과가 나타났다. 선행 발화 방식은 과제 중심적 대화에서 호감도와 지각된 지능을 높이는 효과를 보였다.

대화형 에이전트 인식오류 및 신조어 탐지를 위한 알고리즘 개발: 한글 음절 분리 기반의 단어 유사도 활용 (Developing a New Algorithm for Conversational Agent to Detect Recognition Error and Neologism Meaning: Utilizing Korean Syllable-based Word Similarity)

  • 이정원;임일
    • 지능정보연구
    • /
    • 제29권3호
    • /
    • pp.267-286
    • /
    • 2023
  • 인공지능 스피커로 대표되는 대화형 에이전트는 사람-컴퓨터 간 대화형이기 때문에 대화 상황에서 오류가 발생하는 경우가 잦다. 에이전트 사용자의 발화 기록에서 인식오류는 사용자의 발화를 제대로 인식하지 못하는 미인식오류 유형과 발화를 인식하여 서비스를 제공하였으나 사용자가 의도한 바와 다르게 인식된 오인식오류 유형으로 나뉜다. 이 중 오인식오류의 경우, 서비스가 제공된 것으로 기록되기 때문에 이에 대한 오류 탐지가 별도로 필요하다. 본 연구에서는 텍스트 마이닝 기법 중에서도 단어와 문서를 벡터로 바꿔주는 단어 임베딩과 문서 임베딩을 이용하여 단순 사용된 단어 기반의 유사도 산출이 아닌 단어의 분리 방식을 다양하게 적용함으로써 연속 발화 쌍의 유사도를 기반으로 새로운 오인식오류 및 신조어 탐지 방법을 탐구하였다. 연구 방법으로는 실제 사용자 발화 기록을 활용하여 오인식오류의 패턴을 모델 학습 및 생성 시 적용하여 탐지 모델을 구현하였다. 그 결과, 오인식오류의 가장 큰 원인인 등록되지 않은 신조어 사용을 탐지할 수 있는 패턴 방식으로 다양한 단어 분리 방식 중 초성 추출 방식이 가장 좋은 결과를 보임을 확인하였다. 본 연구는 크게 두 개의 함의를 가진다. 첫째, 인식오류로 기록되지 않아 탐지가 어려운 오인식오류에 대하여 다양한 방식 별 비교를 통해 최적의 방식을 찾았다. 둘째, 이를 실제 신조어 탐지 적용이 필요한 대화형 에이전트나 음성 인식 서비스에 적용한다면 음성 인식 단계에서부터 발생하는 오류의 패턴도 구체화할 수 있으며, 오류로 분류되지 않더라도 사용자가 원하는 결과에 맞는 서비스가 제공될 수 있음을 보였다.

인공지능 에이전트 대화형 인터랙션에서의 감탄사 효과: 자율주행 맥락에서 (The Effect of Interjection in Conversational Interaction with the AI Agent: In the Context of Self-Driving Car)

  • 이수지;서지윤;최준호
    • 문화기술의 융합
    • /
    • 제8권1호
    • /
    • pp.551-563
    • /
    • 2022
  • 이 연구의 목적은 자율 주행 차량의 체화된 에이전트가 '감탄사'를 사용하여 감정 표현을 드러낸 대화 상호작용을 할 경우 사용자 경험에 어떠한 효과를 나타내는지 확인하는 것이다. 감탄사 포함 유무와 대화 유형(과제 중심적 대화 vs. 관계 중심적 대화)의 조건에 따라 실험을 설계하였다. 온라인 실험으로 각 조건별로 4가지 대화 시나리오영상을 시청한 후, 해당 에이전트에 대한 친밀도, 호감도, 신뢰도, 사회적 실재감, 지각된 의인화, 향후 이용 의도를 측정하였다. 분석 결과, 에이전트가 감탄사를 사용할 경우 두 대화 유형 모두에서 사회적 실재감의 주 효과가 나타났다. 에이전트가 감탄사를 사용하지 않을 경우 과제 중심적 대화 유형에서 신뢰와 향후 이용 의도가 높았다. 에이전트가 감탄사를 사용하여 감정적 표현을 더하는 것은 사회적 실재감을 높이는 효과는 발견했지만, 다른 사용자 경험 요인에 대한 영향은 나타나지 않았다.

인공지능 에이전트의 사용 시나리오 분석을 통한 인터랙션 속성 유형화 (Categorization of Interaction Factors through Analysis of AI Agent Using Scenarios)

  • 천수경;연명흠
    • 한국융합학회논문지
    • /
    • 제11권11호
    • /
    • pp.63-74
    • /
    • 2020
  • 인공지능 제품은 스마트폰이나 스피커, 가전제품에 에이전트로 내장되어 '인공지능 비서'로 활용되고 있으며, 현재는 약 인공지능 수준으로 에이전트의 성격, 목소리 등 의인화에 관한 연구가 진행되고 있다. 향후 인공지능 기술 발전으로 지능형 에이전트의 역할과 기능이 확장될 것으로 보이며, 사용자 유형, 사용환경, 에이전트 외관 등 에이전트 관련 다양한 속성에 대한 고려가 필요할 것으로 보인다. 따라서 본 연구에서는 강한 인공지능 에이전트가 나타나는 컨셉 영상 시나리오의 분석을 통해 사용자 관점에서 에이전트의 인터랙션 속성들을 유형화하였다. 연구방법으로 에이전트에 대한 이론적고찰을 토대로 분석을 위한 프레임워크를 구축하였다. 이후 대중화된 영상시청 플랫폼인 유튜브(Youtube)를 활용하여 다수의 영상 시나리오를 수집 및 선별하고 환경, 사용자, 에이전트 관점에 따라 분석하였다. 그 결과 시점, 공간, 형태, 에이전트 행위, 연동기기, 에이전트 인터페이스, 사용상태, 사용자 인터페이스 8개 속성을 유형화하였다. 이는 향후 상용화될 에이전트의 개발 및 예측 시 참고자료로 활용될 것으로 기대된다.