• Title/Summary/Keyword: AgSnO2

Search Result 106, Processing Time 0.024 seconds

Figure of merit and bending characteristics of Mn-SnO2/Ag/Mn-SnO2 tri-layer film (Mn-SnO2/Ag/Mn-SnO2 3중 다층막의 성능지수와 밴딩 특성)

  • Cho, Youngsoo;Jang, Guneik
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.4
    • /
    • pp.190-195
    • /
    • 2021
  • Typical Mn-SnO2/Ag/Mn-SnO2 tri-layer films were prepared on a PET substrate by RF/DC magnetron sputtering method at room temperature. Based on EMP simulation, the thicknesses of the top and bottom Mn-doped SnO2 layers were kept at 40 nm and the Ag layer was maintained at 13 nm for continuous electrical conduction. The experimentally measured optical transmittances at 550 nm wavelength were ranged from 82.9 to 88.1 % and sheet resistances were varied from 5.9 to 6.9 Ω/☐. The highest value of figure of merit, ϕTC was 48.1 × 10-3 Ω-1. Based on bending test under 4 and 5 mm of inner and outer curvature radius condition, tri-layer film resistance varies only by approximately 1.5 % after 10,000 bending cycles, showing excellent mechanical flexibility.

Electrical Contact Characteristics of Ag-SnO2 Materials with Increased SnO2 Content

  • Chen, Pengyu;Liu, Wei;Wang, Yaping
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2348-2352
    • /
    • 2017
  • The electrical contact characteristics including temperature rise, contact resistance and arc erosion rate of the $Ag-SnO_2$ materials with increased $SnO_2$ content were investigated during the repeated make-and-break operations. The thickness of arcing melting layer reduces by half and the arc erosion rate decreases more than 70% under 10000 times operations at AC 10 A with the $SnO_2$ content increasing from 15 wt.% to 45 wt.%, on one hand, temperature rise and contact resistance increase obviously but could be reduced to the same order of conventional $Ag-SnO_2$ materials by increasing the contact force. The microstructure evolution and the effect of $SnO_2$ on the arc erosion, contact resistance were analyzed.

Synthesis of Ag-coated SnO Powder by a Electroless Plating Method (무전해 도금법을 이용한 Ag-coated SnO 파우더의 합성)

  • Park, Chae-Min;Kim, Dong-Gyu;Seong, Jang-Hyeon;Lee, Sang-Hwa;Lee, Gyu-Hwan;Kim, In-Su
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.163-164
    • /
    • 2011
  • 본 연구에서는 Ag paste의 전도성 필러로 사용되는 Ag 파우더를 대체하고자 Ag-coated SnO 파우더가 합성되었다. Ag-coated SnO 파우더의 합성을 위해서는 (1) 균일한 SnO 파우더 합성, (2) SnO 파우더 위에 Ag 무전해도금 과정이 수행 되어야 한다. 본 발표에서는 무전해 도금과정 중 Ag입자의 초기 핵생성 및 성장 관점에서, SnO 파우더의 전처리 조건, 반응 온도 및 pH, 첨가되는 환원제 양의 효과가 조사되었다.

  • PDF

Property changes of Sintered Ag-SnO$_2$contact by Oxide addition (산화물 첨가에 의한 Ag-SnO$_2$contact by Oxide addition)

  • 한세원;이동윤;조해룡;이희웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1989.06a
    • /
    • pp.52-55
    • /
    • 1989
  • The properties of sintered Ag-SnO$_2$contacts which contain the second oxide were investigated with hardeness, workability, electrical conductivity and are erosion. Ag-SnO$_2$contacts containing ZnO or Bi$_2$O$_3$have most excellent workability and arc erosion endurance.

  • PDF

Microstructure and CO Gas Sensing Properties of Ag-CuO-SnO2 Thin Films Prepared by Co-Evaporation and Thermal Oxidation (공증발과 열산화로 제조한 Ag-CuO-SnO2 박막에서 미세조직과 CO 가스 감지특성)

  • Ji, In-Geol;Han, Kyu-Suk;Oh, Jae-Hee;Ko, Tae-Gyung
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.4
    • /
    • pp.429-435
    • /
    • 2009
  • In this study, we investigated microstructure and the CO gas sensing properties of Ag-CuO-$SnO_2$ thin films prepared by co-evaporation and subsequently thermal oxidation at air atmosphere. The sensitivity of a Cu-Sn films, thermally oxidized at $600^{\circ}C$, is strongly affected by the amount of Cu. At Cu:7 wt%-Sn:93 wt%, the film exhibited a maximum sensitivity of ${\sim}2.3$ to CO gas of 1000 ppm at $300^{\circ}C$. In contrast, the sensitivity of a Sn-Ag film did not change significantly with the amount of Ag. An enhanced sensitivity of ${\sim}3.7$ was observed in the film with a composition of Ag:3 wt%-Cu:4 wt%-Sn:93 wt%, when thermally oxidized at $600^{\circ}C$. In addition, this thin film shows a response time of ${\sim}80$ sec and a recovery time of ${\sim}450$ sec to 1000 ppm CO gas. The results demonstrate that the CO sensitivity of the Ag-CuO-$SnO_2$ thin films may be closely associated with coexistence of $SnO_2$ and SnO phase, decrease in average particle size, and a porous microstructure. We also suggest that co-evaporation and followed by thermal oxidation is a very simple and effective method to prepare oxide gas sensor thin films.

Comparative Study on Operational Speeds Based on Contact Material of Magnetic Contactor (전자접촉기의 접촉소재에 따른 동작속도 비교 연구)

  • Yeong-Jin Goh
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.246-250
    • /
    • 2023
  • Magnetic Contactor (MC) research traditionally focuses on arc erosion influenced by contact material. In recent times, with an increasing demand for efficient utilization of DC devices and swift processing, the operational speed of MCs has become paramount. While AgSnO2 generally displays superior response characteristics to AgCdO, this understanding remains material-specific. In this paper, complete MCs were constructed, and the operational speeds were validated based on the two materials.

Formation of $SnO_2$Coating Layer on the Surface of ZnS Powders (ZrS 분말표면상에 $SnO_2$코팅막의 형성)

  • 강승구;김강덕
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.3
    • /
    • pp.287-292
    • /
    • 2001
  • 본 실험은 목적은 CRT(Cathode Ray Tube)용 청색 형광체인 ZnS:Ag 분말 표면에 액상법으로 SnO$_2$를 균일하게 코팅하는 공정조건을 연구하는 것이다. 용매로서 물을 사용하고, Sn의 공급물질로서 SnCl$_4$.4$H_2O$, 침전 촉매로서 CO(NH$_2$)$_2$를 각각 사용하여, 균일 침전 방법으로 ZnS:Ag 분말표면에 SnO$_2$를 코팅할 수 있었다. 초기에 첨가되는 SnCl$_4$.4$H_2O$의 량이 Sn/Zn의 몰비기준으로 0.017인 경우에 ZnS:Ag 분말표면에 Sn(OH)$_4$가 균일하게 코팅되지만, 그 이상 첨가되면 과량의 Sn(OH)$_4$가 입자들 사이에 응집되었다. 코팅된 Sn(OH)$_4$는 비정질 구조로 규명되었으며, 이를 SnO$_2$결정상으로 전이시키기 위하여 300~$700^{\circ}C$ 범위 내에서 열처리를 행하였다. 비정질 Sn(OH)$_4$는 20$0^{\circ}C$이하에서 탈수되었고 45$0^{\circ}C$부터 SnO$_2$로 결정화되기 시작하였다. 순수한 ZnS의 경우, 50$0^{\circ}C$이하에서는 상변화가 없으나, $600^{\circ}C$에서 일부 산화되었으며 $700^{\circ}C$에서는 완전히 ZnO로 산화되므로, ZnS의 산화방지 및 SnO$_2$의 결정화를 동시에 만족하는 최고 열처리온도는 50$0^{\circ}C$로 규명되었다. 그러나 ZnS에 SnO$_2$가 코팅된 시편의 경우에는 $600^{\circ}C$가 되어도 ZnS 상이 거의 산화되지 않았고, $700^{\circ}C$에서도 ZnS와 ZnO 상이 공존한 것으로 보아 SnO$_2$코팅이 ZnS의 산화를 억제하는 것으로 나타났다.

  • PDF

The Effect of the Zn contents on Rapidly Solidified Ag-Zn Electric Contact Materials. (급속응고한 Ag-Zn계 전기접점재료에 미치는 Zn함량의 영향)

  • Kim, Jong Kyu;Jang, Dae Jung;Ju, Kwang Il;Lee, Eun Ho;Um, Seung Yeul;Nam, Tae Woon
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.7
    • /
    • pp.443-448
    • /
    • 2008
  • Contact materials are used in many electrical devices. Ag-Cd alloy has been widely used in electrical part, because Ag-Cd alloy has a good wear resistance and stable contact resistance. But nowadays Ag-Cd alloy isn't being used because of environmental challenges. Currently new research is being done on ($Ag-SnO_2$ and $Ag-SnO_2-In_2O_3$) as an alternative solution to fix any remainly environmental challenges. However $In_2O_3$ is more expensive and Ag-Sn alloy has low wear resistance. According to our research data Zn has a similar physical and chemical property. In this work, so we changed and optimized the Zn oxide to over 4 and added Sn oxide ratio 0.5, 1.0, 1.5wt%. Conclusions from the data recorded from the experiment of $Ag-ZnO-SnO_2$ are as follows.

Direct-Patternable SnO2 Thin Films Incorporated with Conducting Nanostructure Materials (직접패턴형 SnO2 박막의 전도성 나노구조체 첨가연구)

  • Kim, Hyun-Cheol;Park, Hyung-Ho
    • Korean Journal of Materials Research
    • /
    • v.20 no.10
    • /
    • pp.513-517
    • /
    • 2010
  • There have been many efforts to modify and improve the properties of functional thin films by hybridization with nano-sized materials. For the fabrication of electronic circuits, micro-patterning is a commonly used process. For photochemical metal-organic deposition, photoresist and dry etching are not necessary for microscale patterning. We obtained direct-patternable $SnO_2$ thin films using a photosensitive solution containing Ag nanoparticles and/or multi-wall carbon nanotubes (MWNTs). The optical transmittance of direct-patternable $SnO_2$ thin films decreased with introduction of nanomaterials due to optical absorption and optical scattering by Ag nanoparticles and MWNTs, respectively. The crystallinity of the $SnO_2$ thin films was not much affected by an incorporation of Ag nanoparticles and MWNTs. In the case of mixed incorporation with Ag nanoparticles and MWNTs, the sheet resistance of $SnO_2$ thin films decreased relative to incorporation of either single component. Valence band spectral analyses of the nano-hybridized $SnO_2$ thin films showed a relation between band structural change and electrical resistance. Direct-patterning of $SnO_2$ hybrid films with a line-width of 30 ${\mu}m$ was successfully performed without photoresist or dry etching. These results suggest that a micro-patterned system can be simply fabricated, and the electrical properties of $SnO_2$ films can be improved by incorporating Ag nanoparticles and MWNTs.

Highly Sensitive and Selective Gas Sensors Using Catalyst-Loaded SnO2 Nanowires

  • Hwang, In-Sung;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.167-171
    • /
    • 2012
  • Ag- and Pd-loaded $SnO_2$ nanowire network sensors were prepared by the growth of $SnO_2$ nanowires via thermal evaporation, the coating of slurry containing $SnO_2$ nanowires, and dropping of a droplet containing Ag or Pd nanoparticles, and subsequent heat treatment. All the pristine, Pd-loaded and Ag-loaded $SnO_2$ nanowire networks showed the selective detection of $C_2H_5OH$ with low cross-responses to CO, $H_2$, $C_3H_8$, and $NH_3$. However, the relative gas responses and gas selectivity depended closely on the catalyst loading. The loading of Pd enhanced the responses($R_a/R_g$: $R_a$: resistance in air, $R_g$: resistance in gas) to CO and $H_2$ significantly, while it slightly deteriorated the response to $C_2H_5OH$. In contrast, a 3.1-fold enhancement was observed in the response to 100 ppm $C_2H_5OH$ by loading of Ag onto $SnO_2$ nanowire networks. The role of Ag catalysts in the highly sensitive and selective detection of $C_2H_5OH$ is discussed.