• Title/Summary/Keyword: AgRP

Search Result 7, Processing Time 0.02 seconds

Network of hypothalamic neurons that control appetite

  • Sohn, Jong-Woo
    • BMB Reports
    • /
    • v.48 no.4
    • /
    • pp.229-233
    • /
    • 2015
  • The central nervous system (CNS) controls food intake and energy expenditure via tight coordinations between multiple neuronal populations. Specifically, two distinct neuronal populations exist in the arcuate nucleus of hypothalamus (ARH): the anorexigenic (appetite-suppressing) pro-opiomelanocortin (POMC) neurons and the orexigenic (appetite-increasing) neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurons. The coordinated regulation of neuronal circuit involving these neurons is essential in properly maintaining energy balance, and any disturbance therein may result in hyperphagia/obesity or hypophagia/starvation. Thus, adequate knowledge of the POMC and NPY/AgRP neuron physiology is mandatory to understand the pathophysiology of obesity and related metabolic diseases. This review will discuss the history and recent updates on the POMC and NPY/AgRP neuronal circuits, as well as the general anorexigenic and orexigenic circuits in the CNS. [BMB Reports 2015; 48(4): 229-233]

Effect of Anterior Guidance Change on the Condylar Path in Skeletal Class I Young Adult Women Using a Splint with Flat or Steep Anterior Guidance

  • Choi, Byung-Taek;Baek, Seung-Hak
    • Journal of Korean Dental Science
    • /
    • v.5 no.1
    • /
    • pp.29-36
    • /
    • 2012
  • Purpose: To investigate the effects of anterior guidance (AG) change on the working (WCP) and non-working condylar paths (NWCP), and lower incisor path (LIP) using a splint with flat (FAG) or steep AG (SAG). Materials and Methods: The samples consisted of six young adult women (mean age=$23.5{\pm}3.3$ years). Inclusion criteria were skeletal Class I and normodivergent pattern, normal overbite/overjet, minimal slide from retruded cuspal position to intercuspal position, no temporomandibular disorder signs and symptoms, mutually protected occlusion, and minimal tooth wear. After the values of natural AG (NAG) were obtained as a reference for each patient, two types of splints ($15^{\circ}$ flatter and steeper than NAG) were made. After insertion of the splints with FAG or SAG, the WCP, NWCP, and LIP were recorded five times for each patient using an ultrasonic AQR (SAM, Munich, Germany) and statistical analysis was subsequently performed. Result: NAG exhibited postero-superior movement in the WCP and did not show a noticeable immediate side shift (ISS) or difference between the eccentric (EP) and returning paths (RP) in the NWCP. FAG was associated with an irregular and excessive WCP, an increase in ISS, and a difference between EP and RP in the NWCP. SAG showed minimal WCP movement and a decrease in the extent of difference between EP and RP in the NWCP. LIP showed significant differences in EP and in RP (P<0.001, all; FAG

Expression of pro-opiomelanocortin and agouti-related protein in the hypothalamus of caffeine-administered rats

  • Jeong, Joo-Yeon;Ku, Bo-Mi;Lee, Yeon-Kyung;Ryu, Jin-Hyun;Choi, Jung-Il;Kim, Joon-Soo;Cho, Yong-Woon;Roh, Gu-Seob;Kim, Hyun-Joon;Cho, Gyeong-Jae;Choi, Wan-Sung;Kang, Sang-Soo
    • Animal cells and systems
    • /
    • v.15 no.3
    • /
    • pp.203-210
    • /
    • 2011
  • In the present study, we examined the effects of caffeine on food intake and body weight, and pro-opiomelanocortin (POMC) and agouti-related protein (AgRP) expression in the hypothalamus. Rats were administered intraperitoneally with 100 mg/kg caffeine (a high, non-toxic dose) or saline during the light phase. Intraperitoneal administration of caffeine induced a significant reduction in food intake and body weight 12 hr after treatment. In addition, POMC expression was significantly increased and AgRP expression was decreased in the arcuate nucleus (Arc) after caffeine treatment. These results demonstrate that administration of caffeine up-regulates POMC expression and down-regulates AgRP expression in the Arc, suggesting that the activation of the hypothalamic POMC neurons and inhibition of the AgRP neurons might play a role in the regulation of food intake and body weight by caffeine.

Characterization and Tissues Distribution of Vinculin, Agouti-relating Protein and Melanocortin 4 Receptor Genes in Rainbow Trout, Oncorhynchus mykiss

  • Yoon, Jong-Man
    • Development and Reproduction
    • /
    • v.14 no.4
    • /
    • pp.261-268
    • /
    • 2010
  • As in the O. mykiss electrophoretic profiles of RNA, the signals of each RNA sample from 9 individual tissues such as liver, muscle, brain, heart, pituitary gland, kidney, intestine, spleen and gill similar to positive control were obtained. The tissue distributions of the complimentary DNA (cDNA) of O. mykiss four genes were analyzed using quantitative real-time PCR with primer sets for tissue expression analysis. In this rainbow trout species, author obtained bands of various sizes, ranged from 700 bp to 1,400 bp. A dissociation curve was made at the end of each run to make sure that there was no non-specific amplification. Supplementarily, the Ct of each DNA was compared. The Ct values of vinculin with rainbow trout tissues were determined in a manner similar to those for agouti-related protein (AgRP) and melanocortin receptors (MC4R I and MC4R II). Further, obtained Cts for standard curve of each DNA were affected by specific product (vinculin, AgRP and MC4R II genes). After several experiments with four individual genes of rainbow trout, author estimated a variation ratio of the mean Ct value of the DNA extracted using the comparative CTt method was 37.27, and the standard deviation was 5.33. The correlation coefficient between the Ct values and the concentration of cDNA was -0.98, -0.99, -0.91 and -0.86, respectively (vinculin, AgRP, MC4R I and MC4R II genes). Since this correlation showed high linearity, the straight line obtained was used as a standard for the O. mykiss tissues reared in aquarium. A PCR efficiency of 100% is ideally achieved when the slopes are close to the theoretical value of -3.31. According to quantification method, the results of quantification are strongly affected by the DNA fragmentation. The size of most DNA fragments obtained from various tissues of rainbow trout used in the experiment was approximately 100 bp. According to the four slopes, an efficiency of nearly 100% was estimated for four genes detection methods. Additionally, further analysis with more individuals and primers will be required to fully establish optimization in rainbow trout.

Regulation of appetite-related neuropeptides by Panax ginseng: A novel approach for obesity treatment

  • Phung, Hung Manh;Jang, Dongyeop;Trinh, Tuy An;Lee, Donghun;Nguyen, Quynh Nhu;Kim, Chang-Eop;Kang, Ki Sung
    • Journal of Ginseng Research
    • /
    • v.46 no.4
    • /
    • pp.609-619
    • /
    • 2022
  • Obesity is a primary factor provoking various chronic disorders, including cardiovascular disease, diabetes, and cancer, and causes the death of 2.8 million individuals each year. Diet, physical activity, medications, and surgery are the main therapies for overweightness and obesity. During weight loss therapy, a decrease in energy stores activates appetite signaling pathways under the regulation of neuropeptides, including anorexigenic [corticotropin-releasing hormone, proopiomelanocortin (POMC), cholecystokinin (CCK), and cocaine- and amphetamine-regulated transcript] and orexigenic [agoutirelated protein (AgRP), neuropeptide Y (NPY), and melanin-concentrating hormone] neuropeptides, which increase food intake and lead to failure in attaining weight loss goals. Ginseng and ginsenosides reverse these signaling pathways by suppressing orexigenic neuropeptides (NPY and AgRP) and provoking anorexigenic neuropeptides (CCK and POMC), which prevent the increase in food intake. Moreover, the results of network pharmacology analysis have revealed that constituents of ginseng radix, including campesterol, beta-elemene, ginsenoside Rb1, biotin, and pantothenic acid, are highly correlated with neuropeptide genes that regulate energy balance and food intake, including ADIPOQ, NAMPT, UBL5, NUCB2, LEP, CCK, GAST, IGF1, RLN1, PENK, PDYN, and POMC. Based on previous studies and network pharmacology analysis data, ginseng and its compounds may be a potent source for obesity treatment by regulating neuropeptides associated with appetite.

Resolution of the Triacylglycerols Containing Conjugate Trienoic Acids into Their Molecular Species by HPLC in the Reversed-phase and Silver Ion Mode (Reversed-phase 및 $Ag^{+}$-HPLC에 의한 Conjugate Trienoic Acid 함유(含有) Triacylglycerol 분자종(分子種)의 상호분리(相互分離))

  • Kim, Seong-Jin;Woo, Hyo-Kyeng;Joh, Yong-Goe
    • Journal of the Korean Applied Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.197-213
    • /
    • 2001
  • Conjugate trienoic acids (CTA) occurred in triacylglycerols (TGs) of the seed oils of Trichosanthes kirilowii, Momordica charantia and Aleurites fordii, and they were easily converted to their methyl esters in a mixture of sodium methoxide-methanol without any structural destruction. The main fatty acids in triacylglycerol (TG) fraction of the seed oils of Trichosanthes kirilowii are $C_{18:2{\omega}6}$ (32.2 mol %), $C_{18:3{\;}9c.11t,13c}$ (38.0 mol %) and $C_{18:1{\omega}9}$ (11.8 mol %), followed with $C_{16:0}$ (4.8 mol %) and $C_{18:0}$ (3.1 mol %). The TG fraction was resolved into 20 TG molecular species according to the partition number (PN) by reversed-phase (RP)-HPLC. The main TG species were $DT_{c2}$, $MDT_{c}$ and $D_{2}T_{c}$, of which amounts reached 63 mol % of total TG molecular species. The TG sample was fractionated into 11 fractions according to the number of double bond in the molecule by $Ag^{+}-HPLC$ and the species of $DT_{c2}$, $MDT_{c}$ and $D_{2}T_{c}$ were also eluted as main components. The TG species containing CTA showed unusual behaviours in the order of elution by HPLC ; first, TG moleular species of $DT_{c2}$ (D; dienoic acid, $T_{c}$; punicic acid, $T_{ci}$; ${\alpha}-eleostearic$ acid, M ; monoenoic acid, $S_{t}$; stearic acid) was eluted earlier than $Mt_{c2}$, although they have the same PN number of 40, and, secondly, the species of $DT_{ci2}$ with eight double bonds was eluted earlier than that of $D_2T_{ci}$ with seven double bonds. Intact TG of the seed oils of Momordica charantia contained mainly fatty acids such as $C_{18:3{\omega}9c,11t,13t}$ (57.7 mol %), $C_{18:1{\omega}9}$ (17.4 mol %), $C_{18:0}$ (12.3 mol %) and $C_{18:2{\omega}6}$ (10.6 mol %), and was classified into 13 fractions by RP-HPLC. The main TG species were as follows ; $MT_{ci2}$ [$(C_{18:1{\omega}9})(C_{18:3\;9c,11t,13t})_{2}$, 39.1 mol %] and $S_{t}T_{ci2}$ [$(C_{18:0})(C_{18:3\;9c,11t,13t})_2$, 33.9 mol %] comprising about 73 mol % of total TG species, accompanied by $DT_{ci2}$ [$(C_{18:2{\omega}6})(C_{18:3\;9c,11t,13t})_{2}$, 7.3 mol %], $D_{2}T_{ci}$ [$ (C_{18:2{\omega}6})_{2}(C_{18:3\;9c,11t,13t})$, 3.6 mol %] and $MDT_{ci}$ [$(C_{18:1{\omega}9})(C_{18:2{\omega}6})(C_{18:3\;9c,11t,13t})$, 3.5 mol %]. Simple TG species of $T_{ci3}$ [$(C_{18:3\;9c,11t,13t})_3]$ was present in a small amount of 1.4 mol %, but other simple TG species were not detected. The TG was also resolved into 11 fractions according to the number of double bond by $Ag^{+}-HPLC$, and the species were mainly occupied by $MT_{ci2}$ [$(C_{18:1{\omega}9})(C_{18:3\;9c,11t,13t})_{2}$, 39.4 mol %] and $S_tT-{ci2}$ [$(C_{18:0})(C_{18:3\;9c,11t,13t})_{2}$, 35.4 mol %] $DT_{ci2}$ species with eight double bonds was also developed faster than $D_2T_{ci}$ one with seven double bonds as indicated in the analysis of TG of the seed oils of T. kirilowii, and $MT_{ci2}$ species with cis, trans, trans-configurated double bond was eluted earlier than $MT_{c2}$ species with cis, trans, cis-configurated double bond. The main components of fatty acid in total TG fraction isolated from the seed oils of of Aleurites fordii were in the following order ; $C_{18:3\;9c,11t,13t}$ (81.2 mol %)> $C_{18:2{\omega}6}$ (8.5 mol %)> $C_{18:1{\omega}9}$ (5.4 mol %)$. With resolution of the TG by RP-HPLC, eight fractions such as $T_{ci3}$, $Dt_{ci2}$, $D_{2}T_{ci}$, $MT_{ci2}$, $PT_{ci2}$ (P; palmitic acid), $PMT_{ci}$, $PDT_{ci}$ and $S_{t}T_{ci2}$ ($S_{t}$; stearic acid) were isolated, respectively. TG species of $T_{ci3}$ [$(C_{18:3\;9c,11t,13t})_{3}$, 54.2 mol %], $DT_{ci2}$ [$(C_{18:2{\omega}6})(C_{18:3\;9c,11t,13t})_{2}$, 15.0 mol %] and $MT_{ci2}$ [$(C_{18:1{\omega}9})(C_{18:3 9c,11t,13t})_{2}$, 14.8 mol %] were present as main species.

Effect of 24 h Fasting on Gene Expression of AMPK, Appetite Regulation Peptides and Lipometabolism Related Factors in the Hypothalamus of Broiler Chicks

  • Lei, Liu;Lixian, Zhu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.9
    • /
    • pp.1300-1308
    • /
    • 2012
  • The 5'-adenosine monophosphate-activated protein kinase (AMPK) is a key part of a kinase-signaling cascade that acts to maintain energy homeostasis. The objective of this experiment was to investigate the possible effects of fasting and refeeding on the gene expression of hypothalamic AMPK, some appetitive regulating peptides and lipid metabolism related enzymes. Seven-day-old male broiler (Arbor Acres) chicks were allocated into three equal treatments: fed ad libitum (control); fasted for 24 h; fasted for 24 h and then refed for 24 h. Compared with the control, the hypothalamic gene expression of $AMPK{\alpha}2$, $AMPK{\beta}1$, $AMPK{\beta}2$, $AMPK{\gamma}1$, Ste20-related adaptor protein ${\beta}$ ($STRAD{\beta}$), mouse protein $25{\alpha}$ ($MO25{\alpha}$) and agouti-related peptide (AgRP) were increased after fasting for 24 h. No significant difference among treatments was observed in mRNA levels of $AMPK{\alpha}1$, $AMPK{\gamma}2$, LKB1 and neuropeptide Y (NPY). However, the expression of $MO25{\beta}$, pro-opiomelanocortin (POMC), corticotropin-releasing hormone (CRH), ghrelin, fatty acid synthase (FAS), acetyl-CoA carboxylase ${\alpha}$ ($ACC{\alpha}$), carnitine palmitoyltransferase 1 (CPT-1) and sterol regulatory element binding protein-1 (SREBP-1) were significantly decreased. The present results indicated that 24 h fasting altered gene expression of AMPK subunits, appetite regulation peptides and lipometabolism related factors in chick's hypothalamus; the hypothalamic FAS signaling pathway might be involved in the AMPK regulated energy homeostasis and/or appetite regulation in poultry.