• Title/Summary/Keyword: Ag-In alloy

Search Result 315, Processing Time 0.03 seconds

The Effects of Thermal Degradation and Creep Damage on the Microstructure and Composition of the Carbides in the CrMo Steels for Power Plant (발전 설비용 CrMo강의 탄화물 구조와 조성 변화에 미치는 열화 및 크리프 손상의 영향)

  • Ju, Yeon-Jun;Hong, Gyeong-Tae;Lee, Hyeon-Ung;Sin, Dong-Hyeok;Kim, Je-Won
    • Korean Journal of Materials Research
    • /
    • v.9 no.10
    • /
    • pp.1018-1024
    • /
    • 1999
  • The effects of operating temperature and stress on degradation of components in high temperature steam generator were investigated. Several 2.25CrlMo tubes which had operated over 20 years and an unused 9CrlMoVNb tube were tested. For the former samples, the amount of $\textrm{M}_{6}\textrm{C}$ carbide and its size are increased with the aging or operating time. The precipitation behavior of carbides ($\textrm{M}_{2}\textrm{O}$, $\textrm{M}_{6}\textrm{C}$) is changed with the operating temperature of the tubes. However, unused 9CrlMoVNb samples show a different carbide precipitation process due to high chromium, vanadium, and niobium contents. The amount of Cr-rich $\textrm{M}_{23}\textrm{C}_{6}$ carbide is significantly increased with aging time, but that of $\textrm{M}_{6}\textrm{C}$ type carbide is rarely changed with aging time at elevated temperatures.

  • PDF

A Study on the Traditional Forged High Tin Bronzes and the Rivet Joints in Korea (한국의 전통 방짜유기와 이에 사용된 리벳에 관한 연구)

  • Lee, Jae Sung;Kim, Won Soo;Park, Jang Sik
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.1
    • /
    • pp.26-32
    • /
    • 2008
  • Examination of two bronze vessels supposedly from the Koryo dynasty revealed that they consist of bowls and stands that are fixed together using rivet joints made of Cu-Ag alloys. The bowls and stands were forged out of unleaded bronze alloys of approximately 22 weight % Sn before being quenched from the ${\alpha}+{\beta}$ region of the Cu-Sn phase diagram. This specific alloy and the thermo-mechanical treatment constitute two key elements of the unique technical tradition called Bangcha (방짜) that has long been established in Korea. The high Sn content ensures better casting and the thermal treatment causes the brittle ${\delta}$ phase to be avoided in forging as well as in services. The experiment on the laboratory Cu-Ag alloys of varying Ag contents suggested that the Cu-Ag system was the best choice of materials for the rivets at the time in view of their color, availability, ductility and low melting points.

Influence of Thermal Aging at the Interface Cu/sn-Ag-Cu Solder Bump Made by Electroplating (전해도금에 의해 형성된 Sn-Ag-Cu 솔더범프와 Cu 계면에서의 열 시효의 영향)

  • Lee, Se-Hyeong;Sin, Ui-Seon;Lee, Chang-U;Kim, Jun-Gi;Kim, Jeong-Han
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.235-237
    • /
    • 2007
  • In this paper, fabrication of Sn-3.0Ag-0.5Cu solder bumping having accurate composition and behavior of intermetallic compounds(IMCs) growth at interface between Sn-Ag-Cu bumps and Cu substrate were studied. The ternary alloy of the Sn-3.0Ag-0.5Cu solder was made by two binary(Sn-Cu, Sn-Ag) electroplating on Cu pad. For the manufacturing of the micro-bumps, photo-lithography and reflow process were carried out. After reflow process, the micro-bumps were aged at $150^{\circ}C$ during 1 hr to 500 hrs to observe behavior of IMCs growth at interface. As a different of Cu contents(0.5 or 2wt%) at Sn-Cu layer, behavior of IMCs was estimated. The interface were observed by FE-SEM and TEM for estimating of their each IMCs volume ratio and crystallographic-structure, respectively. From the results, it was found that the thickness of $Cu_3Sn$ layer formed at Sn-2.0Cu was thinner than the thickness of that layer be formed Sn-0.5Cu. After aging treatment $Cu_3Sn$ was formed at Sn-0.5Cu layer far thinner.

  • PDF

Oxidation characteristics of solder alloys for the photovoltaic module (태양전지 묘듈용 솔드 합금의 산화 특성)

  • Kim, Hyo Jae;Lee, Young Eun;Lee, Gu;Kang, Gi Hwan;Choi, Byung Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.1
    • /
    • pp.98-104
    • /
    • 2014
  • Photovoltaic (PV) cell is considered as one of the finest ways to utilize the solar power. A study of improving solar cell's efficiency is important because the lifetime of solar cell is determined by photovoltaic module technology. Therefore, oxidation (and/or corrosion) of solder materials will be one of the primary yield and long-term reliability risk factor. Recently, the development of lead-free solder alloy has been done actively about lead-free solder alloys of the thermodynamic and mechanical properties. However, the oxidation behavior have rarely been investigated In this study, the oxidations of 60 wt% Sn-40 wt% Pb, 62 wt% Sn-36 wt% Pb -2 wt% Ag, 50wt% Sn-48 wt% Bi-2 wt% Ag alloys for the interconnect ribbon after exposure in atmosphere at $100^{\circ}C$ for several times were investigated. The wettability of 62 wt% Sn-36 wt% Pb-2 wt% Ag and 50 wt% Sn-48 wt% Bi-2 wt% Ag solders was also studied to compare with that of 60 wt% Sn-40 wt% Pb alloy. The results howed that the zero cross time and the wetting time of 50 wt% Sn-48 wt% Bi-2 wt% Ag solder were better than other two samples. The surface of tested samples was analyzed by XPS. The XPS result showed that in all samples, SnO grew first and then the mixture of SnO and $SnO_2$ was detected. $SnO_2$ grew predominantly for the long time aging. Moreover XPS depth profile analysis has found surface enrichment of tin oxide.

Role of A phase Separating Element on the Plasticity of Amorphous Alloys : Experiment and Atomic Simulation Study (비정질 합금의 소성에 미치는 조성분리 원소의 역할 : 실험 및 전산모사 연구)

  • Park, Kyoung-Won;Lee, Chang-Myeon;Sa, In-Young;Lee, Byeong-Joo;Lee, Jae-Chul
    • Korean Journal of Materials Research
    • /
    • v.19 no.2
    • /
    • pp.79-84
    • /
    • 2009
  • A series of experiments demonstrated that an addition of Ag into $(Cu_{0.5}Zr_{0.5})_{100-x}Ag_{x}$ amorphous alloys alters the plasticity of the alloys in a systematic manner. Energy dispersive x-ray spectroscopy (EDS) conducted on the $(Cu_{0.5}Zr_{0.5})_{100-x}Ag_{x}$ alloys exhibited the presence of compositional modulation, indicating that compositional separation had occurred. The presence of compositional modulation was also validated using a combined technique of molecular dynamics and Monte Carlo simulation. In this study, the effect of Ag on the compositional separation in $(Cu_{0.5}Zr_{0.5})_{100-x}Ag_{x}$ bulk amorphous alloys was investigated to understand the role played by the phase-separating element on the plasticity of the amorphous alloys.

Effect of External Reinforcement on Stress/strain Characteristics of Critical Current in Ag Alloy Sheathed Bi-2212 Superconducting Tapes (Bi-2212 초전도 테이프에서 임계전류의 응력/변형률 특성에 미쳐는 외부강화의 영향)

  • ;K. Katagiri
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.1
    • /
    • pp.6-10
    • /
    • 2001
  • Stress/stram dependencies of the critical current $I_c$ in AgMgNi sheathed multifilamentary Bi(2212) superconducting tapes were evaluated at 77K, 0T. The external reinforcement was accomplished by soldering Ag-Mg tapes to sin91e side or both sides of the sample. With the external reinforcement. the strength of tapes increased but $I_c$, decreased The $I_c$, degradation characteristic according to the external reinforcement was improved markedly in terms of the stress although it appeared less rectal.table on the basis of the strain. Effects of external reinforcement were discussed in a viewpoint of monitoring sensitivity of cracking in superconducting filaments by considering n-value representing the transport behavior of the current. It is closely associated with the location of them relative to the voltage-monitoring region in the tape.

  • PDF

Effect of External Reinforcement on Stress/Strain Characteristics of Critical Current in Ag Alloy Sheathed Bi-2212 Superconducting Tapes. (Bi-2212 초전도 테이프에서 임계전류의 응력/변형률 특성에 미치는 외부강화의 영향)

  • ;;K. Katagiri
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2001.02a
    • /
    • pp.17-20
    • /
    • 2001
  • Stress/strain dependencies of the critical current I$_{c}$ in AgMgNi sheathed multifilamentary Bi(2212) superconducting tapes were evaluated at 77K. The external reinforcement was accomplished by soldering Ag-Mg tapes to single side or both sides of the sample. With the external reinforcement, the strength of tapes increased but I$_{c}$ decreased. The I$_{c}$ degradation characteristic according to the external reinforcement was improved markedly in terms of the stress although it appeared less remarkable on the basis of the strain. Effects of external reinforcement were discussed in a viewpoint of monitoring sensitivity of cracking in superconducting filaments by considering n-value representing the transport behavior of the current, which is closely associated with the location of them relative to the voltage-monitoring region in the tape. tape.

  • PDF

Investigation of Ni/Cu Contact for Crystalline Silicon Solar Cells (결정질 실리콘 태양전지에 적용하기 위한 도금법으로 형성환 Ni/Cu 전극에 관한 연구)

  • Kim, Bum-Ho;Choi, Jun-Young;Lee, Eun-Joo;Lee, Soo-Hong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.250-253
    • /
    • 2007
  • An evaporated Ti/Pd/Ag contact system is most widely used to make high-efficiency silicon solar cells, however, the system is not cost effective due to expensive materials and vacuum techniques. Commercial solar cells with screen-printed contacts formed by using Ag paste suffer from a low fill factor and a high shading loss because of high contact resistance and low aspect ratio. Low-cost Ni and Cu metal contacts have been formed by using electroless plating and electroplating techniques to replace the Ti/Pd/Ag and screen-printed Ag contacts. Ni/Cu alloy is plated on a silicon substrate by electro-deposition of the alloy from an acetate electrolyte solution, and nickel-silicide formation at the interface between the silicon and the nickel enhances stability and reduces the contact resistance. It was, therefore, found that nickel-silicide was suitable for high-efficiency solar cell applications. The Ni contact was formed on the front grid pattern by electroless plating followed by anneal ing at $380{\sim}400^{\circ}C$ for $15{\sim}30$ min at $N_{2}$ gas to allow formation of a nickel-silicide in a tube furnace or a rapid thermal processing(RTP) chamber because nickel is transformed to NiSi at $380{\sim}400^{\circ}C$. The Ni plating solution is composed of a mixture of $NiCl_{2}$ as a main nickel source. Cu was electroplated on the Ni layer by using a light induced plating method. The Cu electroplating solution was made up of a commercially available acid sulfate bath and additives to reduce the stress of the copper layer. The Ni/Cu contact was found to be well suited for high-efficiency solar cells and was successfully formed by using electroless plating and electroplating, which are more cost effective than vacuum evaporation. In this paper, we investigated low-cost Ni/Cu contact formation by electroless and electroplating for crystalline silicon solar cells.

  • PDF

Preperation of catalyst having high activity on oxygen reduction (저온형 연료전지용 산소의 고활성 환원 촉매 제조)

  • 김영우;김형진;이주성
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1992.11a
    • /
    • pp.39-40
    • /
    • 1992
  • This paper dealt with the manufacturing of binary alloy catalyst and showed simple electrochemical method for determing catalytic activity of oxygen reduction in acid or alkaline electrolyte. The catalyst was prepared by impregnating transition metal salts on platinum or silver particles adsorbed before on carbon paper substrate. The electrochemical characteristics of the catalysts was investigated with carbon paper electrode or PTFE-boned porous electrode and then cathodic current densities and tafel slopes were compared. As a result, of all binary catalysts utilized in this work, Pt-Fe, Pt-Mo showed better oxygen reduction activity than pure platinum catalyst in acid electrolyte and Ag-Fe, Ag-Pt, and Ag-Ni-Bi-Ti catalyst did than pure silver catalyst in alkaline electrolyte. The current density of Pt-Fe electrode in acid electrolyte was one and half times higher than that of Pt electrode(~500mA/$\textrm{cm}^2$ at 0.7VvsNHE).

  • PDF

Effect of transverse compressive stress on $I_{c}$ degradation characteristics in Bi-2223 superconducting tapes (Bi-2223 초전도테이프의 임계전류 열화특성에 미치는 횡방향 압축응력의 영향)

  • 신형섭;김병수;오상수;하동우;하홍수
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.101-104
    • /
    • 2003
  • Influences of transverse compressive stress on the critical current ( $I_{c}$) in AgMg and AgMn alloy sheathed Bi-2223 tapes were investigated at 77 K and 0 T. The $I_{c}$ degradation behavior depending on sample specifications was discussed in viewpoints of n-value and damage morphology. As a result, Bi-2223 tapes showed a significant drop in $I_{c}$ for stresses greater than 50MPa. The AgMg sheathed Bi-2223 tapes representing higher $I_{c}$ showed a lower $\sigma$$_{irr}$ and a significant $I_{c}$ degradation with increase in compressive stress. There existed a voltage tap separation dependency of the $I_{c}$ degradation behavior caused by the transverse compressive stress.sive stress.s.

  • PDF