• Title/Summary/Keyword: Ag nanoparticle dispersed polymer

Search Result 2, Processing Time 0.015 seconds

Fabrication and Characterization of Ag Nanoparticle Dispersed Polymer Nanofiber and Ag Nanofiber Using Electrospinning Method (전기방사법을 이용한 Ag 나노입자 분산 고분자 나노파이버와 Ag 나노파이버 제조 및 특성 평가)

  • Kim, Hee-Taik;Hwang, Chi-Yong;Song, Han-Bok;Lee, Kun-Jae;Joo, Yeon-Jun;Hong, Seong-Jei;Kang, Nam-Kee;Park, Seong-Dae;Kim, Ki-Do;Cho, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.15 no.2
    • /
    • pp.114-118
    • /
    • 2008
  • Functional nanomaterial is expected to have improved capacities on various fields. Especially, metal nanoparticles dispersed in polymer matrix and metal nanofiber, one of the functional nanomaterials, are able to achieve improvement of property in the electric and other related fields. In this study, the fabrication of metal (Ag) nanoparticle dispersed nanofibers were attempted. The Ag nanoparticle dispersed polymer nanofiber and Ag nanofiber were fabricated by electrospinning method using electric force. First, PVP/$AgNO_3$ nanofibers were synthesized by electrospinning in $18{\sim}22kV$ voltage with the starting materials (Ag-nitrate) added polymer (PVP; poly (vinylpyrrolidone)). Then Ag nanoparticle dispersed polymer nanofibers were fabricated to reduce hydrogen reduction at $150^{\circ}C$ for 3hr. And Ag nanofibers were synthesized by the decomposited of PVP at $300{\sim}500^{\circ}C$ for 3hr. The nanofibers were analyzed by XRD, TGA, FE-SEM and TEM. The experimental results showed that the Ag nanofibers could be applied in many fields as an advanced material.

Preparation and Characterization of Biopolymer-Based Nanocomposite Films: Chitosan-Based Nanocomposite Films with Antimicrobial Activity

  • Rhim, Jong-Whan
    • 한국포장학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.54-73
    • /
    • 2006
  • Four different types of chitosan-based nanocomposite films were prepared using a solvent casting method by incorporating with four types of nanoparticles, i.e., an unmodified montmorillonite (Na-MMT), an organically modified montmorillonite (Cloisite 30B), a Nano-silver, and a Ag-zeolite (Ag-Ion). X-ray diffraction patterns of the nanocomposite films indicated that a certain degree of intercalation was formed in the nanocomposite films, with the highest intercalation in the Na-MMT-incorporated films followed by films with Cloisite 30B and Ag-Ion. SEM micrographs showed that in all the nanocomposite films, except the Nanosilver-incorporated one, nanoparticles were dispersed homogeneously throughout the chitosan polymer matrix. Consequently, mechanical and barrier properties of chitosan films were affected through intercalation of nanoparticles, i.e., tensile strength (TS) increased by 7-16%, while water vapor permeability (WVP) decreased by 25-30% depending on the nanoparticle material tested. In addition, chitosan-based nanocomposite films, especially silver-containing ones, showed a promising range of antimicrobial activity.

  • PDF