• Title/Summary/Keyword: Ag nano ink

Search Result 28, Processing Time 0.029 seconds

Manufacturing of Ag Nano-particle Ink-jet Printer and the Application into Metal Interconnection Process of Si Solar Cells (Si 태양전지 금속배선 공정을 위한 나노 Ag 잉크젯 프린터 제작 및 응용)

  • Lee, Jung-Tack;Choi, Jae-Ho;Kim, Ki-Wan;Shin, Myoung-Sun;Kim, Keun-Joo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.2
    • /
    • pp.73-81
    • /
    • 2011
  • We manufactured the inkjet printing system for the application into the nano Ag finger line interconnection process in Si solar cells. The home-made inkjet printer consists of motion part for XY motion stage with optical table, head part, power and control part in the rack box with pump, and ink supply part for the connection of pump-tube-sub ink tanknozzle. The ink jet printing system has been used to conduct the interconnection process of finger lines on Si solar cell. The nano ink includes the 50 nm-diameter. Ag nano particles and the viscosity is 14.4 cP at $22^{\circ}C$. After processing of inkjet printing on the finger lines of Si solar cell, the nano particles were measured by scanning electron microscope. After the heat treatment at $850^{\circ}C$, the finger lines showed the smooth surface morphology without micropores.

The Effect of Particle Size on Rheological Properties of Highly Concentrated Ag Nanosol (초 고농도 Ag 나노 졸의 입자크기 제어가 잉크 점성거동에 미치는 영향)

  • Song, Hae-Chon;Nham, Sahn;Lee, Byong-Seok;Choi, Young-Min;Ryu, Beyong-Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.41-46
    • /
    • 2009
  • The rheological properties of highly concentrated Ag nano sol depending on particle size were studied. The Ag nano sol was prepared by reducing the Ag ion in aqueous solution. The size of Ag nano particle was controlled by two steps of nucleation and growth, and the thickness of adsorption layer was varied by molecular weight of polyelectrolytes. The polyelectrolytes acted as not only ionic complex agent in ionic state and but also dispersant after formation of Ag nano sol. The effective volume was controlled by combination of varying the molecular weight of polyelectrolytes and the size Ag nano sol. The particle size and the viscosity of nano sol were characterized by particle size analyzer, HR-TEM and cone & plate viscometer. It was found that the 10 nm and 40 nm-sized Ag nano sols were prepared by controlling the nucleation and growth steps, respectively. Finally, we could prepare highly concentrated Ag nano sol over 50 wt%.

A new nano-composite carbon ink for disposable dopamine biosensors (나노컴포지트 카본 잉크가 전착된 일회용 도파민 바이오센서)

  • Dinakaran, T.;Chang, S.-C.
    • Analytical Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.35-42
    • /
    • 2016
  • A new nano-composite carbon ink for the development of disposable dopamine (DA) biosensors based on screen-printed carbon electrodes (SPCEs) is introduced. The method developed uses SPCEs coupled with a tyrosinase modified nano-composite carbon ink. The ink was prepared by an “in-house” procedure with reduced graphene oxide (rGO), Pt nanoparticles (PtNP), and carbon materials such as carbon black and graphite. The rGO-PtNP carbon composite ink was used to print the working electrodes of the SPCEs and the reference counter electrodes were printed by using a commercial Ag/AgCl ink. After the construction of nano-composite SPCEs, tyrosinase was immobilized onto the working electrodes by using a biocompatible matrix, chitosan. The composite of nano-materials was characterized by X-ray photoelectron spectroscopy (XPS) and the performance characteristics of the sensors were evaluated by using voltammetric and amperometric techniques. The cyclic voltammetry results indicated that the sensors prepared with the rGO-PtNP-carbon composite ink revealed a significant improvement in electro-catalytic activity to DA compared with the results obtained from bare or only PtNP embedded carbon inks. Optimum experimental parameters such as pH and operating potential were evaluated and calibration curves for dopamine were constructed with the results obtained from a series of amperometric detections at −0.1 V vs. Ag/AgCl. The limit of detection was found to be 14 nM in a linear range of 10 nM to 100 µM of DA, and the sensor’s sensitivity was calculated to be 0.4 µAµM−1cm−2.

Interfacial Microstructures between Ag Wiring Layers and Various Substrates (Ag 인쇄배선과 이종재료기판과의 접합계면)

  • Kim, Keun-Soo;Suganuma, Katsuaki;Huh, Seok-Hwan
    • Journal of Welding and Joining
    • /
    • v.29 no.5
    • /
    • pp.90-94
    • /
    • 2011
  • Ag metallic particles from nano-scale to submicron-scale are combined with organic solvent to provide fine circuits and interconnection. Ink-jet printing with Ag nano particle inks demonstrated the potentials of the new printed electronics technology. The bonding at the interface between the Ag wiring layer and the various substrates is very important. In this study, the details of interfaces in Ag wiring are investigated primarily by microstructure observation. By adjusting the materials and sintering conditions, nicely formed interfaces between Ag wiring and Cu, Au or organic substrates are achieved. In contrast, transmission electron microscope (TEM) image clearly shows interface debonding between Ag wiring and Sn substrate. Sn oxides are formed on the surface of the Sn plating. The formation of these is a root cause of the interface debonding.

High Concentrated Silver Nano Ink Formulation for the Inkjet Applications (잉크젯 응용기술을 위한 고농도 은 나노 잉크 배합)

  • Kim, Tae-Hoon;Cho, Hye-Jin;Joung, Jae-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.559-560
    • /
    • 2006
  • Inkjet Printing is very attractive method for direct patterns with no masks, In order to Achieve direct printing with nano metal, It is often necessary to print them with highly concentrated Ink We research the High Concentrated silver nano ink. Formulation which has a good thermal stability and storage stability and jet stability using a ethylene glycol ether. Normally Alcohol-based inks can be sensitive But High boiling point ethylene glycol ether base Ink is creating a stable meniscus and minimum maintenance issues. We are reaching a 50~60wt% high Silver Ink using a Hydrophilic Ag Nano powder. (30~50nm)

  • PDF

Effect of PVP(polyvinylpyrrolidone) on the Ag Nano Ink Property for Reverse Offset Printing (PVP(polyvinylpyrrolidone)가 리버스 오프셋용 은 나노 잉크 물성에 미치는 영향)

  • Han, Hyun-Suk;Kwak, Sun-Woo;Kim, Bong-Min;Lee, Taik-Min;Kim, Sang-Ho;Kim, In-Young
    • Korean Journal of Materials Research
    • /
    • v.22 no.9
    • /
    • pp.476-481
    • /
    • 2012
  • Among the various roll-to-roll printing technologies such as gravure, gravure-offset, and reverse offset printing, reverse offset printing has the advantage of fine patterning, with less than 5 ${\mu}m$ line width. However, it involves complex processes, consisting of 1) the coating process, 2) the off process, 3) the patterning process, and 4) the set process of the ink. Each process demands various ink properties, including viscosity, surface tension, stickiness, and adhesion with substrate or clich$\acute{e}$; these properties are critical factors for the printing quality of fine patterning. In this study, Ag nano ink was developed for reverse offset printing and the effect of polyvinylpyrrolidone(PVP), used as a capping agent of Ag nano particles, on the printing quality was investigated. Ag nano particles with a diameter of ~60 nm were synthesized using the conventional polyol synthesis process. Ethanol and ethylene glycol monopropyl ether(EGPE) were used together as the main solvent in order to control the drying and absorption of the solvents during the printing process. The rheological behavior, especially ink adhesion and stickiness, was controlled with washing processes that have an effect on the offset process and that played a critical role in the fine patterning. The electrical and thermal behaviors were analyzed according to the content of PVP in the Ag ink. Finally, an Ag mesh pattern with a line width of 10 ${\mu}m$ was printed using reverse offset printing; this printing showed an electrical resistivity of 36 ${\mu}{\Omega}{\cdot}cm$ after sintering at $200^{\circ}C$.

Fabrication of gate electrode for OTFT using screen-printing and wet-etching with nano-silver ink

  • Lee, Mi-Young;Song, Chung-Kun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.889-892
    • /
    • 2009
  • We have developed a practical printing technology for the gate electrode of organic thin film transistors(OTFTs) by combining screen-printing with wet-etching process using nano-silver ink as a conducting material. The screen-printed and wet-etched Ag electrode exhibited a minimum line width of ~5 um, the thickness of ~65 nm, and a resistivity of ${\sim}10^{-6}{\Omega}{\cdot}cm$, producing good geometrical and electrical characteristics for gate electrode. The OTFTs with the screen-printed and wet-etched Ag electrode produced the saturation mobility of $0.13cm^2$/Vs and current on/off ratio of $1.79{\times}10^6$, being comparable to those of OTFT with the thermally evaporated Al gate electrode.

  • PDF

Fabrication of 1-${\mu}m$ channel length OTFTs by microcontact printing

  • Shin, Hong-Sik;Baek, Kyu-Ha;Yun, Ho-Jin;Ham, Yong-Hyun;Park, Kun-Sik;Lee, Ga-Won;Lee, Hi-Deok;Wang, Jin-Suk;Lee, Ki-Jun;Do, Lee-Mi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1118-1121
    • /
    • 2009
  • We have fabricated inverted staggered pentacene Thin Film Transistor (TFT) with 1-${\mu}m$ channel length by micro contact printing (${\mu}$-CP) method. Patterning of micro-scale source/drain electrodes without etching was successfully achieved using silver nano particle ink, Polydimethylsiloxane (PDMS) stamp and FC-150 flip chip aligner-bonder. Sheet resistance of the printed Ag nano particle films were effectively reduced by two step annealing at $180^{\circ}C$.

  • PDF

Fabrication of Micro Pattern on Flexible Substrate by Nano Ink using Superhydrophobic Effect (초발수 현상을 이용한 나노 잉크 미세배선 제조)

  • Son, Soo-Jung;Cho, Young-Sang;Rha, Jong Joo;Cho, Chul-Jin
    • Journal of Powder Materials
    • /
    • v.20 no.2
    • /
    • pp.120-124
    • /
    • 2013
  • This study is carried out to develop the new process for the fabrication of ultra-fine electrodes on the flexible substrates using superhydrophobic effect. A facile method was developed to form the ultra-fine trenches on the flexible substrates treated by plasma etching and to print the fine metal electrodes using conductive nano-ink. Various plasma etching conditions were investigated for the hydrophobic surface treatment of flexible polyimide (PI) films. The micro-trench on the hydrophobic PI film fabricated under optimized conditions was obtained by mechanical scratching, which gave the hydrophilic property only to the trench area. Finally, the patterning by selective deposition of ink materials was performed using the conductive silver nano-ink. The interface between the conductive nanoparticles and the flexible substrates were characterized by scanning electron microscope. The increase of the sintering temperature and metal concentration of ink caused the reduction of electrical resistance. The sintering temperature lower than $200^{\circ}C$ resulted in good interfacial bonding between Ag electrode and PI film substrate.