• Title/Summary/Keyword: Ag ion

Search Result 411, Processing Time 0.025 seconds

Molecular and Morphological Evidence of Hepatotoxicity after Silver Nanoparticle Exposure: A Systematic Review, In Silico, and Ultrastructure Investigation

  • Sooklert, Kanidta;Wongjarupong, Asarn;Cherdchom, Sarocha;Wongjarupong, Nicha;Jindatip, Depicha;Phungnoi, Yupa;Rojanathanes, Rojrit;Sereemaspun, Amornpun
    • Toxicological Research
    • /
    • v.35 no.3
    • /
    • pp.257-270
    • /
    • 2019
  • Silver nanoparticles (AgNPs) have been widely used in a variety of applications in innovative development; consequently, people are more exposed to this particle. Growing concern about toxicity from AgNP exposure has attracted greater attention, while questions about nanosilver-responsive genes and consequences for human health remain unanswered. By considering early detection and prevention of nanotoxicology at the genetic level, this study aimed to identify 1) changes in gene expression levels that could be potential indicators for AgNP toxicity and 2) morphological phenotypes correlating to toxicity of HepG2 cells. To detect possible nanosilver-responsive genes in xenogenic targeted organs, a comprehensive systematic literature review of changes in gene expression in HepG2 cells after AgNP exposure and in silico method, connection up- and down-regulation expression analysis of microarrays (CU-DREAM), were performed. In addition, cells were extracted and processed for transmission electron microscopy to examine ultrastructural alterations. From the Gene Expression Omnibus (GEO) Series database, we selected genes that were up- and down-regulated in AgNPs, but not up- and down-regulated in silver ion exposed cells, as nanosilver-responsive genes. HepG2 cells in the AgNP-treated group showed distinct ultrastructural alterations. Our results suggested potential representative gene data after AgNPs exposure provide insight into assessment and prediction of toxicity from nanosilver exposure.

Research on Afterglow Brightness of Sr4-(x+y+z)Al14O25 : Eux, Dyy, Agz by Solid State Synthesis (고상법으로 합성한 Sr4-(x+y+z)Al14O25 : Eux, Dyy, Agz계 축광성 형광체 장잔광의 연구)

  • Kim, Seung-woo;Kim, Jung-sik
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.4
    • /
    • pp.348-354
    • /
    • 2011
  • Long-lasting brightness $Sr_{4}Al_{14}O_{25}$ : $Eu^{2+}$, $Dy^{3+}$, $Ag^{+}$ phosphor was synthesized by modified solid state reaction and its photoluminescence was investigated. $Sr(NO_3)_{2}$ and $Al(NO_3)_3{\cdot}9H_{2}O$ as starting materials, and $B_{2}O_{3}$ as a flux were mixed with $Eu_{2}O_{3}$ as an activator, $Dy_{2}O_{3}$ as a coactivator, and $AgNO_{3}$ as a charge compensator. The crystalline of target powder showed a single-phase $Sr_{4}Al_{14}O_{25}$ by the XRD characterization and the average particle size was about 20-30 ${\mu}m$ from the FE-SEM observation. $Ag^{+}$ ion doping effects (0-0.06 mol) on $Sr_{4}Al_{14}O_{25}:Eu^{2+},\;Dy^{3+},\;Ag^{+}$ phosphor were measured by photoluminescence spectrometer and luminescence meter. The of photoluminescence intensity of the $Sr_{3.64}Al_{14}O_{25}:Eu_{0.11},\;Dy_{0.22},\;Ag_{0.03}$ phosphor was higher than other compositions and afterglow brightness was 0.186 $cd/m^{2}$.

Two Crystal Structures of the Vacuum-Dehydrated Fully $Ag^+$-Exchanged Zeolite X ($Ag^+$ 이온으로 완전히 치환되고 탈수된 두개의 제올라이트 X의 결정구조)

  • Jang, Se Bok;Park, Sang Yun;Song, Seong Hwan;Jeong, Mi Suk;Kim, Yang
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.7
    • /
    • pp.474-482
    • /
    • 1996
  • Two crystal structures of the vacuum dehydrated $Ag^+$-exchanged zeolite X have been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd3 at 21(1)$^{\circ}C$ (a=24.922(1)${\AA}$ and a=24.901(1)${\AA}$, respectively). Each crystal was ion exchanged in flowing streams of aqueous $AgNO_3$ for three days. The first crystal was dehydrated at 300$^{\circ}C$ and $2{\times}10^{-6$torr for two days. The second crystal was similarly dehydrated at 350$^{\circ}C$. Their structures were refined to the final error indices, $R_1=0.095\;and\;R_2=0.092$ with 227 reflections, and $R_1=0.096\;and\;R_2=0.087$ with 334 reflections, respectively, for which I > 3${\sigma}$(I). In the first crystal, Ag species are found at five different crystallographic sites: sixteen $Ag^+$ ions fill the site I, the center of the double 6-ring, thirty-two Ag0 atoms fill the I' site in the sodalite cavities opposite double six-rings, seventeen $Ag^+$ ions lie at the 32-fold site II' inside the sodalite cavity at the single six-oxygen ring in the supercage, fifteen Ag+ ions lie at the 32-fold site II, in the supercage, and the remaining twelve $Ag^+$ ions lie at site III' in the supercage at a little off two-fold axes. In the second crystal, all Ag species are located similarly as crystal 1; 16 at site I, 28 at site I', 16 at site II, 16 at site II', 6 at site III and 6 at site III'. Total 88 silver species were found per unit cell. The remaining four Ag atoms were migrated out of the zeolite framework to form small silver crystallites on the surface of the zeolite single crystal. In the first structure, the numbers of Ag atoms per unit cell are approximately 32.0 and these may form tetrahedral $Ag_4$ clusters at the centers of the sodalite cavities. The probable four-atom cluster is stabilized by coordination to two $Ag^+$ ions. The Ag-Ag distance in the cluster, ca. 3.05 ${\AA}$, is a little longer than 2.89 ${\AA}$, Ag-Ag distance in silver metal. At least two six-ring $Ag^+$ ions on sodalite cavity (site II') must necessarily approach this cluster and this cluster may be viewed as a distorted octahedral silver cluster, (Ag6)2+.

  • PDF

Characterization of Water-Filled Ag/AgCl Reference Electrode

  • Bahn Chi Bum;Oh Sihyoung;Hwang Il Soon;Chung Hahn Sup;Jegarl Sung
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.3
    • /
    • pp.87-93
    • /
    • 2001
  • Pressure-balanced external Ag/AgCl electrode has been extensively used for both Pressurized Water Reactor (PWR) and Boiling Water Reactor (PWR) environments. The use of KCI-based buffer solution often becomes the source of electrode potential drift due to slow leakage through its porous plug, typically made of zirconia. It is reported that results of our effort to improve the stability of electrode potential by using high purity water as the filling solution in which $Cl^-$ ion activity can be established and maintained at the solubility of AgCl even with the sustained leakage for a long period. Stability tests have been made in boron and lithium mixture solution at $288^{\circ}C$. The electrode potential remained stable within 10 mV over one week period. And after a thermal cycle between 288 to $240^{\circ}C$ the potential shift of Ag/AgCl electrodes did not exceed 15 mV By using the limiting equivalent ionic conductances and Agar's hydrodynamic theory, the thermal liquid junction potential (TLJP) of the electrode has been predicted. The calculated values for the water-fiued Ag/AgCl electrode potential, in which the chlorine concentration in the filling solution was derived from the measured data at ambient temperature, had a good agreement with the experimental values.

Comparison of Optical Properties of Ga-doped and Ag-doped ZnO Nanowire Measured at Low Temperature

  • Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.5
    • /
    • pp.262-264
    • /
    • 2014
  • Pristine ZnO, 3 wt.% Ga-doped (3GZO) and 3 wt.% Ag-doped (3SZO) ZnO nanowires (NWs) were grown using the hot-walled pulse laser deposition (HW-PLD) technique. The doping of Ga and Ag in ZnO NWs was observed by analyzing the optical and chemical properties. We optimized the synthesis conditions, including processing temperature, time, gas flow, and distance between target and substrate for the growth of pristine and doped ZnO NWs. The diameter and length of pristine and doped ZnO NWs were controlled under 200 nm and several ${\mu}m$, respectively. Low temperature photoluminescence (PL) was performed to observe the optical property of doped NWs. We clearly observed the shift of the near band edge (NBE) emission by using low temperature PL. In the case of 3GZO and 3SZO NWs, the center photon energy of the NBE emissions shifted to low energy direction using the Burstein Moss effect. A strong donor-bound exciton peak was found in 3 GZO NWs, while an acceptor-bound exciton peak was found in 3SZO NWs. X-ray photoelectron spectroscopy (XPS) also indicated that the shift of binding energy was mainly attributed to the interaction between the metal ion and ZnO NWs.

The Silver Cycle and Fluxes in the Ocean

  • Ju, Se-Jong
    • Journal of the korean society of oceanography
    • /
    • v.32 no.3
    • /
    • pp.156-161
    • /
    • 1997
  • The biogeochemical cycle of silver has rarely been reviewed, even though the silver ion (Ag$^{\times}$) is extremly toxic to some organisms. Its concentration is still rising sharply because of increased anthropogenic activity, specifically the discharge from the film industry (mainly, silver thiosulfate: Ag (S$_2$O$_3$)${^3-}_2$). Recently, a number of researchers have quantified the major fluxes and reservoirs of silver in the open ocean, bays, and estuaries. A review of the available information for Ag cycling in the open ocean shows that the riverine input (from human activity and weathering processes: 7${\times}$10$^6$ kg/yr and 5${\times}$10$^6$ kg/yr, respectively) is the dominant source of Ag to estuarine and coastal regions. Most of the silver (90% of riverine input silver) is removed in coastal sediments by the physical-chemical character of silver due to its high partitioning with particulate matter. On the other hand, in the open ocean the atmospheric input (wet and dry deposition: 1.48${\times}$10$^6$ kg/yr and 1.94${\times}$ 10$^5$ kg/yr, respectively) becomes more important as a source of silver than riverine input. The residence time of silver calculated from available data is 1250 yrs in the deep ocean below 500 m, but only 3 yrs in the surface ocean.

  • PDF

A study on the synthesis and formation behavior of nanostructrued TiN films by metal doping (금속원소 도핑에 따른 초고경도 나노구조 TiN 박막의 합성 및 형성 거동에 관한 연구)

  • 명현식;한전건
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.3
    • /
    • pp.193-199
    • /
    • 2003
  • Ti-Cu-N and Ti-Ag-N nanocomposite films with various copper and silver contents were synthesized by arc ion plating and magnetron sputtering hybrid system. The structure and mechanical properties of these films were found to be dependant on the copper and silver concentration. The maximum hardness of Ti-Cu-N and Ti-Ag-N films showed approximately 40 ㎬ below 2 at%Me. The role of soft metallic phase in Ti-Me-N nanosturctured films containing one hard and one soft phase is also discussed.

Polymeric Membrane Silver-ion Selective Electrodes Based on Schiff Base N,N'-Bis(pyridin-2-ylmethylene)benzene-1,2-diamine

  • Seo, Hyung-Ran;Jeong, Eun-Seon;Ahmed, Mohammad Shamsuddin;Lee, Hyo-Kyoung;Jeon, Seung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1699-1703
    • /
    • 2010
  • The Schiff base N,N'-bis(pyridin-2-ylmethylene)benzene-1,2-diamine [BPBD] has been synthesized and explored as ionophore for preparing PVC-based membrane sensors selective to the silver ($Ag^+$) ion. Potentiometric investigations indicate high affinity of this receptor for silver ion. The best performance was shown by the membrane of composition (w/w) of ionophore: 1 mg, PVC: 33 mg, o-NPOE: 66 mg and additive were added 50 mol % relative to the ionophore in 1 mL THF. The sensor works well over a wide concentration range $1{\times}10^{-3}$ to $1.0{\times}10^{-7}$ M by pH 6 at room temperature (slope 58.6 mV/dec.) with a response time of 10 seconds and showed good selectivity to silver ion over a number of cations. It could be used successfully for the determination of silver ion content in environmental and waste water samples.

Reaction of Dehydrated Ag$_2$Ca$_5$-A with Cesium. Crystal Structures of Fully Dehydrated Ag$_2$Ca$_5$-A and Ag$_2$Cs$_{10}$-A

  • Kim, Yang;Song, Seong-Hwan;Park, Jong-Yul;Kim, Un-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.3
    • /
    • pp.243-247
    • /
    • 1989
  • Two crystal structures of dehydrated $Ag^+\;and\;Ca^{2+}$ exchanged zeolite A, $Ag_2Ca_$5-A, reacting with 0.01 Torr of Cs vapor at $200^{\circ}C$ for 2 hours and 0.1 Torr of Cs vapor at $250^{\circ}C$ for 48 hours, respectively, have been determined by single crystal X-ray diffraction techniques. Their structures were solved and refined in the cubic space group Pm3m at $21(1)^{\circ}C$. The stoichiometry of first crystal was $Ag_2Ca_5$-A (a = 12.294(1)${\AA}$), indicating that Cs vapor did not react with cations in zeolite A and that of second crystal was $Ag_2Cs_{10}$-A (a = 12.166(1)${\AA}$), indicating that all $Ca^{2+}$ ions were reduced by Cs vapor and replaced by $Cs^+$ ions. Full-matrix least-squares refinements of $Ag_2Ca_5-A\;and\;Ag_2Cs_{10}$-A has converged to the final error indices, $R_1\;=\;0.041\;and\;R_2$ = 0.048 with 227 reflections, and $R_1\;=\;0.117\;an\;n\;fdd\;R_2$ = 0.120 with 167 reflections, respectively, for which I > $3{\sigma}$(I). In the structure of $Ag_2Ca_5$-A, both $Ag^+$ ions and $Ca^{2+}$ ions lie on two crystal symmetrically independent threefold axis sites on the 6-rings; $2\;Ag^+$ ions are recessed 0.33 ${\;AA}$ from the (111) planes of three O(3) oxygens and 5 $Ca^{2+}$ ions lie on the nearly center of each 6-oxygen planes. In the structure of $Ag_2Cs_{10}-A,\;Cs^+$ ions lie on the 5 different crystallographic sites. 3 $Cs^+$ ions lie at the centers of the 8-rings at sites of D4h symmetry. 6 $Cs^+$ ions lie on the threefold axes of unit cell: $4\;Cs^+$ ions are found deep in the large cavity and 2 $Cs^+$ ions are found in the sodalite cavity. One $Cs^+$ ion is found in the large cavity near a 4-ring.