• 제목/요약/키워드: Ag embedded $TiO_2$

검색결과 3건 처리시간 0.02초

Development of Eco-Friendly Ag Embedded Peroxo Titanium Complex Solution Based Thin Film and Electrical Behaviors of Res is tive Random Access Memory

  • Won Jin Kim;Jinho Lee;Ryun Na Kim;Donghee Lee;Woo-Byoung Kim
    • 한국재료학회지
    • /
    • 제34권3호
    • /
    • pp.152-162
    • /
    • 2024
  • In this study, we introduce a novel TiN/Ag embedded TiO2/FTO resistive random-access memory (RRAM) device. This distinctive device was fabricated using an environmentally sustainable, solution-based thin film manufacturing process. Utilizing the peroxo titanium complex (PTC) method, we successfully incorporated Ag precursors into the device architecture, markedly enhancing its performance. This innovative approach effectively mitigates the random filament formation typically observed in RRAM devices, and leverages the seed effect to guide filament growth. As a result, the device demonstrates switching behavior at substantially reduced voltage and current levels, heralding a new era of low-power RRAM operation. The changes occurring within the insulator depending on Ag contents were confirmed by X-ray photoelectron spectroscopy (XPS) analysis. Additionally, we confirmed the correlation between Ag and oxygen vacancies (Vo). The current-voltage (I-V) curves obtained suggest that as the Ag content increases there is a change in the operating mechanism, from the space charge limited conduction (SCLC) model to ionic conduction mechanism. We propose a new filament model based on changes in filament configuration and the change in conduction mechanisms. Further, we propose a novel filament model that encapsulates this shift in conduction behavior. This model illustrates how introducing Ag alters the filament configuration within the device, leading to a more efficient and controlled resistive switching process.

Transparent TIO/Ag NW/TIO Hybrid Electrode Grown on PET for Flexible Organic Solar Cell

  • Seo, Ki-Won;Lee, Ju-Hyun;Na, Seok-In;Kim, Han-ki
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.394.2-394.2
    • /
    • 2014
  • We fabricated highly transparent and flexible Ti doped In2O3 (TIO)/Ag nanowire(NW)/TIO (TAT) multilayer electrodes by linear facing target sputtering (LFTS) and brush-painting for used as flexible for anode organic solar cells(FOSCs). The characteristics of TAT transparent anode as a function of number of brush-painting cycles was also investigated. At optimized conditions we achieved highly flexible TAT multilayer electrodes with a low sheet resistance of $9.01{\Omega}/square$ and a high diffusive transmittance more than 80% in visible region as well as superior mechanical stability. The effective embedment of the Ag NW network between top and bottom TIO films led to a metallic conductivity, high transparency. Based on FE-SEM HRTEM, and XRD analysis, we can find that the Ag NW network was effectively embedded between top and bottom TIO layers due to good flexibility of Ag NW, the TAT multilayer showed superior flexibility than single TIO layer. Successful operation of FOSCs with high power conversion efficiency of 3.01% indicates that TAT hybrid electrode is a promising alternative to conventional ITO electrode for high performance FOSCs.

  • PDF

Non-gaseous Plasma Immersion Ion Implantation and Its Applications

  • Han, Seung-Hee;Kim, En-Kyeom;Park, Won-Woong;Moon, Sun-Woo;Kim, Kyung-Hun;Kim, Sung-Min
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.151-151
    • /
    • 2012
  • A new plasma process, i.e., the combination of PIII&D and HIPIMS, was developed to implant non-gaseous ions into materials surface. HIPIMS is a special mode of operation of pulsed-DC magnetron sputtering, in which high pulsed DC power exceeding ~1 kW/$cm^2$ of its peak power density is applied to the magnetron sputtering target while the average power density remains manageable to the cooling capacity of the equipment by using a very small duty ratio of operation. Due to the high peak power density applied to the sputtering target, a large fraction of sputtered atoms is ionized. If the negative high voltage pulse applied to the sample stage in PIII&D system is synchronized with the pulsed plasma of sputtered target material by HIPIMS operation, the implantation of non-gaseous ions can be successfully accomplished. The new process has great advantage that thin film deposition and non-gaseous ion implantation along with in-situ film modification can be achieved in a single plasma chamber. Even broader application areas of PIII&D technology are believed to be envisaged by this newly developed process. In one application of non-gaseous plasma immersion ion implantation, Ge ions were implanted into SiO2 thin film at 60 keV to form Ge quantum dots embedded in SiO2 dielectric material. The crystalline Ge quantum dots were shown to be 5~10 nm in size and well dispersed in SiO2 matrix. In another application, Ag ions were implanted into SS-304 substrate to endow the anti-microbial property of the surface. Yet another bio-application was Mg ion implantation into Ti to improve its osteointegration property for bone implants. Catalyst is another promising application field of nongaseous plasma immersion ion implantation because ion implantation results in atomically dispersed catalytic agents with high surface to volume ratio. Pt ions were implanted into the surface of Al2O3 catalytic supporter and its H2 generation property was measured for DME reforming catalyst. In this talk, a newly developed, non-gaseous plasma immersion ion implantation technique and its applications would be shown and discussed.

  • PDF