• Title/Summary/Keyword: Ag activation

Search Result 170, Processing Time 0.026 seconds

COMPARISON OF DIFFUSION COEFFICIENTS AND ACTIVATION ENERGIES FOR AG DIFFUSION IN SILICON CARBIDE

  • KIM, BONG GOO;YEO, SUNGHWAN;LEE, YOUNG WOO;CHO, MOON SUNG
    • Nuclear Engineering and Technology
    • /
    • v.47 no.5
    • /
    • pp.608-616
    • /
    • 2015
  • The migration of silver (Ag) in silicon carbide (SiC) and $^{110m}Ag$ through SiC of irradiated tristructural isotropic (TRISO) fuel has been studied for the past three to four decades. However, there is no satisfactory explanation for the transport mechanism of Ag in SiC. In this work, the diffusion coefficients of Ag measured and/or estimated in previous studies were reviewed, and then pre-exponential factors and activation energies from the previous experiments were evaluated using Arrhenius equation. The activation energy is $247.4kJ{\cdot}mol^{-1}$ from Ag paste experiments between two SiC layers produced using fluidized-bed chemical vapor deposition (FBCVD), $125.3kJ{\cdot}mol^{-1}$ from integral release experiments (annealing of irradiated TRISO fuel), $121.8kJ{\cdot}mol^{-1}$ from fractional Ag release during irradiation of TRISO fuel in high flux reactor (HFR), and $274.8kJ{\cdot}mol^{-1}$ from Ag ion implantation experiments, respectively. The activation energy from ion implantation experiments is greater than that from Ag paste, fractional release and integral release, and the activation energy from Ag paste experiments is approximately two times greater than that from integral release experiments and fractional Ag release during the irradiation of TRISO fuel in HFR. The pre-exponential factors are also very different depending on the experimental methods and estimation. From a comparison of the pre-exponential factors and activation energies, it can be analogized that the diffusion mechanism of Ag using ion implantation experiment is different from other experiments, such as a Ag paste experiment, integral release experiments, and heating experiments after irradiating TRISO fuel in HFR. However, the results of this work do not support the long held assumption that Ag release from FBCVD-SiC, used for the coating layer in TRISO fuel, is dominated by grain boundary diffusion. In order to understand in detail the transport mechanism of Ag through the coating layer, FBCVD-SiC in TRISO fuel, a microstructural change caused by neutron irradiation during operation has to be fully considered.

Silver Activation Process Utilizing Permanganate Oxidation for Electroless Copper Plating on PET (과망간산염의 산화 과정을 응용한 PET 위 무전해 도금의 은 활성화 공정)

  • Lee, Hong-Gi;Heo, Jin-Yeong;Im, Yeong-Saeng;Lee, Geon-Hyeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.181-182
    • /
    • 2015
  • 본 실험에서는 PET 위 무전해 도금을 위한 대안 공정 개발을 목적으로 은(Ag)와 과망간산염($MnO_4{^-}$)를 사용하여 기존에 일반적으로 사용된 Sn/Pd의 Sensitization과 Activation process를 대체하는 기술을 연구했다. Palladium(Pd)의 경우 공정비용에서 높은 부분을 차지하기 때문에 이를 대신하여 Ag를 사용했으며, PET 표면의 전처리를 위해 Ultra Violet과 과망간 산염을 이용하여 표면의 친수성을 높였다. 과망간산염을 사용하여 표면을 전처리하는 과정에서 이산화망간($MnO_2$)과 알코올 작용기가 생성되는데 Ag activation 단계에서 촉매 생성에 중간 매개체 역할을 하는 것으로 사료된다. 이와 같은 결론을 도출 하기 위해서 표면 위 Ag의 화학적 구조 및 상 분석을 위해 XPS와 TEM이 사용되었으며 표면에서 Ag는 Ag-O와 같은 Silver oxide의 형태와 Ag-Mn-O와 같은 Compound로 무전해 도금을 위한 촉매 역할 하는 것으로 판단된다.

  • PDF

Ultrasound Assisted Sn-Ag-Pd Activation Process for Electroless Copper Plating (무전해 동 도금을 위한 초음파 적용 주석-은-팔라듐 활성화 공정에 대한 연구)

  • Lee, Chang-Myeon;Hur, Jin-Young;Lee, Hong-Kee
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.6
    • /
    • pp.275-281
    • /
    • 2014
  • An ultrasound-assisted Sn-Ag-Pd activation method for electroless copper plating was presented in this study. With this activation process, it was shown that the fine catalyst particles were homogeneously distributed with high density on the entire specimen. In addition, it was observed that incubation period occurred during the electroless plating step was decreased owing to the absorption of Ag which holds high catalytic activity. Resulting from the refinement and high densification of catalyst, the defect-free gap-fill was achieved within the 20x nm trench.

Effects of Ag Additives on Electrical and Optical Properties of As2Se3 Thin Films (비정질 As2Se3 박막에 첨가된 은이 전기 및 광학적 성질에 미치는 효과)

  • Lee, Chanku;Lee, Sudae;Kim, Douk Hoon;Mun, Jung Hak
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.1 no.2
    • /
    • pp.63-69
    • /
    • 1996
  • D.c conductivity and optical transmittance of amorphous ($As_2Se_3$)Ag, (x =0, 2, 5, 10mol%) thin films were measured in order to find effects of Ag additives on electrical and optical properties of the films. The d.c. activation energy and the optical gap decreased with increasing Ag contents the Urbach tail was approximately unchangeable for variation of Ag contents. For Ag contents of 5mol% and less, the rate of decrease of the d.c activation energy was more rapidly than that of the optical gap with increasing Ag contents. For Ag contents more than 5mol%, the rate of decrease of the d.c activation energy and the optical gap were nearly the same each other with decreasing Ag contents. So it was appeared that the Fermi level of the films comes close to the mobility edge for Ag contents of 5mol% and less, and the mobility edge comes close the Fermi level for Ag contents more than 5mol%.

  • PDF

Enhancement of Au·Ag Leaching by Mechanochemical Activation and Thiourea-Thiocyanate Mixing Solution (기계적-화학적 활성화와 티오요소-티오시안산염 혼합용액에 의한 Au·Ag 용출 향상)

  • You, Don-Sang;Park, Cheon-Young
    • Journal of the Korean earth science society
    • /
    • v.35 no.6
    • /
    • pp.401-411
    • /
    • 2014
  • In order to enhance the Au Ag leach rate, a mechanochemical activation process and a mixed thiourea-thiocyanate solution has been applied to Au concentrate. To achieve mechanochemical activation, the Au concentrate was mechanically ground using a dry and a wet process. The results of a particle size distribution analysis and an XRD analysis, average particle size and crystallite size were much smaller in the dry-sample than in the concentrate sample. As well the size was smaller in the wet-sample than in the dry-sample. In SEM and XRD analysis, the amorphization effect was observed in the wet-sample due to mechanochemical activation. Au Ag leaching experiments were carried out with a thiourea solution, a thiocyanate solution and a mixed thiourea-thiocyanate solution. The Au Ag leach rate was much greater in the dry-ground-sample than in the concentrate sample, and the leach rate was greater in the wet-ground-sample than in the dry-sample. The Au Ag leach rate was much greater in the thiocyanate solution than in the thiourea solution, and the leaching rate was much greater in the mixed thiourea-thiocyanate solution than in the thiocyanate solution. Up to a 99% leach rate for Au Ag were only achieved in the wet-sample using the mixed thiourea-thiocyanate leaching solution.

Reliability of Sn-Ag-Cu Solder Joint on ENEPIG Surface Finish: 2. Effects of time of Pd activation (ENEPIG 표면처리에서의 Sn-Ag-Cu 솔더조인트 신뢰성: 2. Pd 촉매 시간의 영향)

  • Huh, Seok-Hwan;Lee, Ji-Hye;Ham, Suk-Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.3
    • /
    • pp.51-56
    • /
    • 2014
  • The reliability of solder joint is significantly affected by the property of surface finish. This paper reports on a study of high speed shear energy and failure mode for Sn-4.0wt%Ag-0.5wt%Cu (SAC405) solder joints with the time of Pd activation. The nodule size of electroless Ni-P deposit increased with increasing the time of Pd activation. The roughness (Ra) of electroless Ni-P deposit decreased with increasing the time of Pd activation. Then, with $HNO_3$ vapor, the quasi-brittle and brittle mode of SAC405 solder joint decreased with increasing the time of Pd activation. This results indicate that the increase in the Pd activation time for Electroless Ni/ Electroless Pd/ Immersion Au (ENEPIG) surface finish play a critical role for improving the robustness of SAC405 solder joint.

Activation Energy and Interface Reaction of Sn-40Pb/Cu & Sn-3.0Ag-0.5Cu/Cu (Sn-40Pb/Cu 및 Sn-3.0Ag-0.5Cu/Cu 접합부 계면반응 및 활성화에너지)

  • Kim, Whee-Sung;Hong, Won-Sik;Park, Sung-Hun;Kim, Kwang-Bae
    • Korean Journal of Materials Research
    • /
    • v.17 no.8
    • /
    • pp.402-407
    • /
    • 2007
  • In electronics manufacturing processes, soldering process has generally been used in surface mounting technology. Because of environmental restriction, lead free solders as like a SnAgCu ternary system are being used widely. After soldering process, the formation and growth of intermetalic compounds(IMCs) are formed in the interface between solder and Cu substrate as follows isothermal temperature and time. In this studies, therefore, we investigated the effects of the Cu substrate thickness on the IMC formation and growth of Sn-40Pb/Cu and Sn-3.0Ag-0.5Cu/Cu solder joints, respectively. The effect of the Cu thickness in PCB Cu pad and pure Cu plate was analyzed as measuring of thickness of each IMC. After solder was soldered on PCB and Cu plate which have different Cu thickness, we measured the IMC thickness in solder joints respectively. Also we compared with the effectiveness of Cu thickness on the IMC growth. From these results, we calculated the activation energy.

Development of Porcine Embryos Following Intracytoplasmic Sperm Injection I. Effect of Activation and Sperm Capacitation (ICSI에 의한 돼지 수정란의 발달 I. 난자의 활성화와 정자의 수정능력 획득 유기 효과)

  • Moon S. J.;Ahn S. J.;Kang M. J.;Kim K. H.
    • Journal of Embryo Transfer
    • /
    • v.20 no.3
    • /
    • pp.201-206
    • /
    • 2005
  • This study was conducted to investigate the effects of oocyte activation after ICSI and of capacitation of insemination sperm before ICSI in Swine. There was no significant difference on cleavage rate and blastocyst developmental rate treated with ethanol, cycloheximide, or ethanol and cycloheximide jointly between treatment and control groups. However, significantly difference was found on cleavage rate and blastocyst developmental rate treated with caffeine and Ca-ionophore on capacitation of insemination sperm before ICSI (p<0.05). There was no significant difference on pronuclear formation rate and total oocyte activation rate treated with oocyte activation after ICSI between treatment and control groups, but was significant difference on pronuclear formation rate and total oocyte activation rate treated with capacitation treat of sperm (p<0.05).

Characteristic of Cu-Ag Added Thin Film on Molybdenum Substrate for an Advanced Metallization Process (TFT-LCDs에 적용 가능한 Cu-Ag 박막에 대한 Mo 기판 위에서의 특성조사)

  • Lee, H.M.;Lee, J.G.
    • Korean Journal of Materials Research
    • /
    • v.16 no.4
    • /
    • pp.257-263
    • /
    • 2006
  • We have investigated the effect of silver added to Cu films on the microstructure evolution, resistivity, surface morphology, stress relaxation temperature, and adhesion properties of Cu(Ag) alloy thin films deposited on Mo glue layer upon annealing. In addition, pure Cu films deposited on Mo has been annealed and compared. The results show that the silver in Cu(Ag) thin films control the grain growth through the coarsening of its precipitates upon annealing at $300^{\circ}C{\sim}600^{\circ}C$ and the grain growth of Cu reveals the activation energy of 0.22 eV, approximately one third of activation energy for diffusion of Ag dopant along the grain boundaries in Cu matrix (0.75 eV). This indicates that the grain growth can be controlled by Ag diffusion along the grain boundaries. In addition, the grain growth can be a major contributor to the decreased resistivity of Cu(Ag) alloy thin films at the temperature of $300^{\circ}C{\sim}500^{\circ}C$, and decreases the resistivity of Cu(Ag) thin films to $1.96{\mu}{\Omega}-cm$ after annealing at $600^{\circ}C$. Furthermore, the addition of Ag increases the stress relaxation temperature of Cu(Ag) thin films, and thus leading to the enhanced resistance to the void formation, which starts at $300^{\circ}C$ in the pure Cu thin films. Moreover, Cu(Ag) thin films shows the increased adhesion properties, possibly resulting from the Ag segregating to the interface. Consequently, the Cu(Ag) thin films can be used as a metallization of advanced TFT-LCDs.

Activation Energy for Intermetallic Compound Formation of Sn-40Pb/Cu and Sn-3.0Ag-0.5Cu/Cu Solder Joints (Sn-40Pb/Cu 및 Sn-3.0Ag-0.5Cu/Cu 솔더 접합계면의 금속간화합물 형성에 필요한 활성화에너지)

  • Hong, Won-Sik;Kim, Whee-Sung;Park, Noh-Chang;Kim, Kwang-Bae
    • Journal of Welding and Joining
    • /
    • v.25 no.2
    • /
    • pp.82-88
    • /
    • 2007
  • Sn-3.0Ag-0.5Cu lead fee solder was generally utilized in electronics assemblies. But it is insufficient to research about activation energy(Q) that is applying to evaluate the solder joint reliability of environmental friendly electronics assemblies. Therefore this study investigated Q values which are needed to IMC formation and growth of Sn-3.0Ag-0.5Cu/Cu and Sn-40pb/Cu solder joints during aging treatment. We bonded Sn-3.0Ag-0.5Cu and Sn-40Pb solders on FR-4 PCB with Cu pad$(t=80{\mu}m)$. After reflow soldering, to observe the IMC formation and growth of the solder joints, test specimens were aged at 70, 150 and $170^{\circ}C$ for 1, 2, 5, 20, 60, 240, 960, 15840, 28800 and 43200 min, respectively. SEM and EDS were utilized to analysis the IMCS. From these results, we measured the total IMC$(Cu_6Sn_5+Cu_3Sn)$ thickness of Sn-3.0Ag-0.5Cu/Cu and Sn-40Pb/Cu interface, and then obtained Q values for the IMC$(Cu_6Sn_5,\;Cu_3Sn)$ growth of the solder joints.