• Title/Summary/Keyword: Ag+ solution

Search Result 661, Processing Time 0.028 seconds

Preparation of Ag/PVP Nanocomposites as a Solid Precursor for Silver Nanocolloids Solution

  • Hong, Hyun-Ki;Park, Chan-Kyo;Gong, Myoung-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1252-1256
    • /
    • 2010
  • A polyvinylpyrrolidone (PVP)/Ag nanocomposites was prepared by the simultaneous thermal reduction and radical polymerization route. The in situ synthesis of the Ag/PVP nanocomposites is based on the finding that the silver n-propylcarbamate (Ag-PCB) complex can be directly dissolved in the NVP monomer, and decomposed by only heat treatment in the range of 110 to $130^{\circ}C$ to form silver metal. Silver nanoparticles with a narrow size distribution (5 - 40 nm) were obtained, which were well dispersed in the PVP matrix. A successful synthesis of Ag/PVP nanocomposites then proceeded upon heat treatment as low as $110^{\circ}C$. Moreover, important advantages of the in situ synthesis of Ag/PVP composites include that no additives (e.g. solvent, surface-active agent, or reductant of metallic ions) are used, and that the stable silver nanocolloid solution can be directly prepared in high concentration simply by dissolving the Ag/PVP nanocomposites in water or organic solvent.

Transport behavior of PVP (polyvinylpyrrolidone) - AgNPs in saturated packed column: Effect of ionic strength and HA (포화 컬럼실험에서 이온강도 변화 및 유기물질 출현에 의한 PVP로 코팅된 은나노 입자의 거동 연구)

  • Heo, Jiyong;Han, Jonghun;Her, Namguk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.3
    • /
    • pp.263-270
    • /
    • 2016
  • Recent Engineered nanoparticles were increasingly exposed to environmental system with the wide application and production of nanomaterials, concerns are increasing about their environmental risk to soil and groundwater system. In order to assess the transport behavior of silver nanoparticles (AgNPs), a saturated packed column experiments were examined. Inductively coupled plasma-mass spectrometry and a DLS detector was used for concentration and size measurement of AgNPs. The column experiment results showed that solution chemistry had a considerable temporal deposition of AgNPs on the porous media of solid glass beads. In column experiment, comparable mobility improvement of AgNPs were observed by changing solution chemistry conditions from salts (in both NaCl and $CaCl_2$ solutions) to DI conditions, but in much lower ionic strength (IS) with $CaCl_2$. Additionally, the fitted parameters with two-site kinetic attachment model form the experimental breakthrough curves (BTCs) were associated that the retention rates of the AgNPs aggregates were enhanced with increasing IS under both NaCl and $CaCl_2$ solutions.

Corrosion Characteristics of Gold-Coated Silver Wire for Semiconductor Packaging (반도체 패키징용 금-코팅된 은 와이어의 부식특성)

  • Hong, Won Sik;Kim, Mi-Song;Kim, Sang Yeop;Jeon, Sung Min;Moon, Jeong Tak;Kim, Youngsik
    • Corrosion Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.289-294
    • /
    • 2021
  • In this study, after measuring polarization characteristics of 97.3 wt% Ag, Au-Coated 97.3 wt% Ag (ACA) and 100 wt% Au wires in 1 wt% H2SO4 and 1 wt% HCl electrolytes at 25 ℃, corrosion rate and corrosion characteristics were comparatively analyzed. Comparing corrosion potential (ECORR) values in sulfuric acid solution, ACA wire had more than six times higher ECORR value than Au wire. Thus, it seems possible to use a broad applied voltage range of bonding wire for semiconductor packaging which ACA wire could be substituted for the Au wire. However, since the ECORR value of ACA wire was three times lower than that of the Au wire in a hydrochloric acid solution, it was judged that the use range of the applied voltage and current of the bonding wire should be considered. In hydrochloric acid solution, 97.3 wt% Ag wire showed the highest corrosion rate, while ACA and Au showed similar corrosion rates. Additionally, in the case of sulfuric acid solution, all three types showed lower corrosion rates than those under the hydrochloric acid solution environment. The corrosion rate was higher in the order of 97.3 wt% Ag > ACA > 100 wt% Au wires.

Fabrication of a Ultrathin Ag Film on a Thin Cu Film by Low-Temperature Immersion Plating in an Grycol-Based Solution (글리콜 용매 기반 저온 치환 은도금법으로 형성시킨 동박막 상 극박 두께 Ag 도금층)

  • Kim, Ji Hwan;Cho, Young Hak;Lee, Jong-Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.2
    • /
    • pp.79-84
    • /
    • 2014
  • To investigate the plating properties of a diethylene glycol-based Ag immersion plating solution containing citric acid, silver immersion plating was performed in a range from room temperature to $50^{\circ}C$ using sputtered Cu specimens. The used Cu specimens possessed surface structure with large numbers of pinholes which were created with over-acid etching. The Ag immersion plating performed at $40^{\circ}C$ exhibited that the pinholes and copper surface were completely filled with Ag just after 5 min mainly due to galvanic displacement reaction, indicating the best plating properties. Subsequently, the surface morphology of Ag-coated Cu became rougher as the plating time increased to 30 min because of the deposition of silver nanoparticles created by chemical reduction in the solution. The specimen that its overall surface was covered with silver indicated the start of oxidation at temperature higher than around $50^{\circ}C$ in air as compared with pure Cu, indicating enhanced anti-oxidation properties.

Electrochemical Oxidation of Silver (I) Salt (Ag(I) 염의 전해산화)

  • Duk Mook Kim
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.158-163
    • /
    • 1985
  • The anodic oxidations of the Silver(I) / Silver(II) / Silver(III) system have been studied in aq. 2M $AgNO_3$ solution with Platinum and Carbon electrodes. It has been found that $Ag_7O_8NO_3$ can be produced at relatively higher current density. Deposited black Oxy-salt were analyzed with several methods such as oxidizing power, X-ray powder diffraction patterns, thermal analysis, and reduction curves. It decomposed to AgO upon being suspended in boiling water. AgO compound obtained from $Ag_7O_8NO_3$ were purer and denser than Alfa-product AgO.

  • PDF

Removal of I by Adsorption with AgX (Ag-impregnated X Zeolite) from High-Radioactive Seawater Waste (AgX (Ag-함침 X 제올라이트)에 의한 고방사성해수폐액으로부터 요오드(I)의 흡착 제거)

  • Lee, Eil-Hee;Lee, Keun-Young;Kim, Kwang-Wook;Kim, Hyung-Ju;Kim, Ik-Soo;Chung, Dong-Yong;Moon, Jei-Kwon;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.3
    • /
    • pp.223-234
    • /
    • 2016
  • This study aimed to the adsorption-removal of high- radioactive iodide (I) contained in the initially generated high-radioactive seawater waste (HSW), with the use of AgX (Ag-impregnated X zeolite). Adsorption of I by AgX (hereafter denoted as AgX-I adsorption) was increased by increasing the Ag-impregnated concentration in AgX, and its concentration was suitable at about 30 wt%. Because of AgCl precipitation by chloride ions contained in seawater waste, the leaching yields of Ag from AgX (Ag-impregnated concentration : about 30~35 wt%) was less than those in distilled water (< 1 mg/L). AgX-I adsorption was above 99% in the initial iodide concentration ($C_i$) of 0.01~10 mg/L at m/V (ratio of weight of adsorbent to solution volume)=2.5 g/L. This shows that efficient removal of I is possible. AgX-I adsorption was found to be more effective in distilled water than in seawater waste, and the influence of solution temperature was insignificant. Ag-I adsorption was better described by a Freundlich isotherm rather than a Langmuir isotherm. AgX-I adsorption kinetics can be expressed by a pseudo-second order rate equation. The adsorption rate constants ($k_2$) decreased by increasing $C_i$, and conversely increased by increasing the ratio of m/V and the solution temperature. This time, the activation energy of AgX-I adsorption was about 6.3 kJ/mol. This suggests that AgX-I adsorption is dominated by physical adsorption with weaker bonds. The evaluation of thermodynamic parameters (a negative Gibbs free energy and a positive Enthalpy) indicates that AgX-I adsorption is a spontaneous reaction (forward reaction), and an endothermic reaction indicating that higher temperatures are favored.

A Study on the Mechanical Properties of Ag-X(X=Cu,Ni,C) Alloys Prepared by the Vacuum-deposition Technique (진공증착법으로 제작한 Ag-X(X=Cu,Ni,C) 합금의 기계적 성질에 관한 연구)

  • Oh, Chang-Sup;Han, Chang-Suk
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.5
    • /
    • pp.243-250
    • /
    • 2011
  • When alloys are vacuum-deposited on cooled substrates, super-rapidly cooled alloy films in the unequilibrium state can be obtained. As an application of this method, Ag-Cu, Ag-Ni and Ag-C alloys were successfully produced, and their mechanical properties with tempering temperature were investigated. The following results were obtained : (1) In case of Ag-Cu alloys, the solid solution was hardened by tempering at $150^{\circ}C$. The hardening is considered to occur when the solid solution begins to decompose into ${\alpha}$ and ${\beta}$ phases. The Knoop hardness number of a 40 at.%Ag-Cu alloy film deposited on a cooled glass substrate was 390 $kg/mm^2$. The as-deposited films were generally very hard but fractured under stresses below their elastic limits. (2) In case of Ag-Ni and Ag-C alloys, after the tempering of 4 at.%Ni-Ag alloy at $400^{\circ}C$ and of 1 and 2 at.%C-Ag alloys at $200^{\circ}C$, they were hardened by the precipitation of fine nickel and carbon particles. The linear relationship between proof stress vs. $(grain\;diameter)^{-l/2}$ for bulk silver polycrystals can be applied to vacuum-deposited films up to about 0.1 ${\mu}m$ grain diameter, but the proof stress of ultra-fine grained silver with grain diameters of less than 0.1 ${\mu}m$ was smaller than the value expected from the Petch's relation.

Feasibility Study on Silver Nanoparticle Application to a Radioisotope Carrier (은나노입자의 방사성 동위원소 운반체 적용 유효성 검증 연구)

  • Jang, Beom-Su;Lee, Joo-Sang;Park, Hae-Jun;Kim, Hwa-Jung;Park, Sang Hyun
    • Journal of Radiation Industry
    • /
    • v.5 no.3
    • /
    • pp.197-202
    • /
    • 2011
  • In this study, an Ag-polyaniline-silica (Ag-PANI-silica) nanoparticle was evaluated as a radioisotope carrier. An Ag-PANI-silica nanoparticle was incubated in the $^{125}I$ solution for a duration of 24 hr to test its radioisotope absorptivity. During the incubation, radioactivity of the nanoparticle was measured at 3, 6, 12, and 24 hr. After a 24 hr incubation, $^{125}I$-Ag-PANI-silica nanoparticle was incubated in a fresh saline for a duration of 48 hr to check its stability. Additionally, the $^{125}I$-Ag-PANI-silica nanoparticle was injected to the ICR mouse to investigate its in-vivo distribution characteristics. The $^{125}I$ absorption yield of the Ag-PANI-silica nanoparticle was higher than 95% after a 6 hr incubation period in the $^{125}I$ solution. And $^{125}I$-Ag-PANI-silica was stable for 48 hr at 80% yield at room temperature. The SPECT/CT image of a mouse that received $^{125}I$-Ag-PANI-silica complex showed that the $^{125}I$-Ag-PANI-silica complex was distributed in the lung, stomach and thyroid at 30 min post injection. From these results, the Ag-PANI-silica nanoparticle has good radio-iodine carrying property and can be applicable for the purpose of diagnosis and therapy.

Production of Silver Impregnated Bamboo Activated Carbon and Reactivity with NO Gases (은첨착 대나무 활성탄의 제조와 NO 가스 반응 특성)

  • Bak, Young-Cheol;Choi, Joo-Hong;Lee, Geun-Lim
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.807-813
    • /
    • 2014
  • The Ag-impregnated activated carbon was produced from bamboo activated carbon by soaking method of silver nitrate solution. The carbonization and activation of raw material was conducted at $900^{\circ}C$. Soaking conditions are the variation of silver nitrate solution concentration (0.002~0.1 mol/L) and soaking time (maximum 24 h). The specific surface area and pore size distribution of the prepared activated carbons were measured. Also, NO and activated carbon reaction were conducted in a thermogravimetric analyzer in order to use for de-NOx agents of used activated carbon. Carbon-NO reactions were carried out with respect to reaction temperature ($20{\sim}850^{\circ}C$) and NO gas partial pressure (0.1~1.8 kPa). As results, Ag amounts are saturated within 2h, Ag amounts increased 1.95 mg Ag/g (0.2%)~ 88.70 mg Ag/g (8.87%) with the concentration of silver nitrate solution in the range of 0.002~0.1 mol/L. The specific volume and surface area of bamboo activated carbon of impregnated with 0.2% silver were maximum, but decreased with increasing Ag amounts of activated carbon due to pore blocking. In NO reaction, the reaction rate of impregnated bamboo activated carbon was retarded as compare with that of bamboo activated carbon. Measured reaction orders of NO concentration and activation energy were 0.63[BA], 0.69l[BA(Ag)] and 80.5 kJ/mol[BA], 66.4 kJ/mol[BA(Ag)], respectively.

Evaluation of Mechanical Properties and Resistance to Thermal Shock of YBCO-Ag Superconductors (YBCO-Ag 초전도체의 기계적 성질 및 열충격 내성에 대한 평가)

  • 주진호
    • Journal of Powder Materials
    • /
    • v.5 no.2
    • /
    • pp.139-144
    • /
    • 1998
  • We have evaluated the role of Ag additions on the strength, fracture toughness, elastic modulus and resistance to thermal shock of $YBa_2Cu_3O_{7-x}$(YBCO) superconductor. Addition of 10 vol.% Ag improved strength and fracture toughness, whereas, decreased elastic modulus of YBCO. In addition, YBCO-Ag composites improved resistance to thermal shock probably due to enhanced strength, fracture toughness and thermal conductivity as a result of Ag addition. It is to be noted that YBCO-Ag made by mixing with $AgNO_3$ solution showed slightly higher strength, fracture toughness and resistance to thermal shock, compared to that made by mixing with metallic Ag powder. These improvements are believed to be due to the microstructure of more finely and uniformly distributed Ag particles.

  • PDF