• Title/Summary/Keyword: African Swine Disease

Search Result 22, Processing Time 0.024 seconds

Control measures to African swine fever outbreak: active response in South Korea, preparation for the future, and cooperation

  • Kim, Yong-Joo;Park, Bongkyun;Kang, Hae-Eun
    • Journal of Veterinary Science
    • /
    • v.22 no.1
    • /
    • pp.13.1-13.14
    • /
    • 2021
  • African swine fever (ASF) is one of the most complex infectious swine diseases and the greatest concern to the pig industry owing to its high mortality and no effective vaccines available to prevent the disease. Since the first outbreak of ASF in pig farms, ASF has been identified in 14 pig farms in four cities/counties in South Korea. The outbreak was resolved in a short period because of the immediate control measures and cooperative efforts. This paper reviews the ASF outbreak and the experience of successfully stopping ASF in pig farms in South Korea through active responses to prevent the spread of ASF. In addition, suitable changes to build a sustainable pig production system and collaborative efforts to overcome the dangerous animal disease, such as ASF, are discussed.

Surveillance of African swine fever infection in wildlife and environmental samples in Gangwon-do

  • Ahn, Sangjin;Kim, Jong-Taek
    • Korean Journal of Veterinary Service
    • /
    • v.45 no.1
    • /
    • pp.13-18
    • /
    • 2022
  • African swine fever (ASF) is fatal to domestic pigs and wild boars (Sus scrofa) and affects the domestic pig industry. ASF is transmitted directly through the secretions of infected domestic pigs or wild boars, an essential source of infection in disease transmission. ASFV is also very stable in the environment. Thus, the virus is detected in the surrounding environment where ASF-infected carcasses are found. In this study, ASF infection monitoring was conducted on the swab and whole blood samples from wild animals, various hematopoietic arthropod samples that could access infected wild boar carcasses or habitats to cause maintenance and spread of disease, and soil samples of wild boar habitats. ASF viral DNA detection was confirmed negative in 317 wildlife and environmental samples through a real-time polymerase chain reaction. However, ASF occurs in the wild boars and spreads throughout the Korean peninsula. Therefore, it is necessary to trace the route of ASF virus infection by a continuous vector. Additional monitoring of various samples with potential ASF infection is needed to help the epidemiologic investigation and disease prevention.

Mechanistic modelling for African swine fever transmission in the Republic of Korea

  • Eutteum Kim;Jun-Sik Lim;Son-Il Pak
    • Journal of Veterinary Science
    • /
    • v.24 no.2
    • /
    • pp.21.1-21.5
    • /
    • 2023
  • Under the current African swine fever (ASF) epidemic situation, a science-based ASF-control strategy is required. An ASF transmission mechanistic model can be used to understand the disease transmission dynamics among susceptible epidemiological units and evaluate the effectiveness of an ASF-control strategy by simulating disease spread results with different control options. The force of infection, which is the probability that a susceptible epidemiological unit becomes infected, could be estimated by applying an ASF transmission mechanistic model. The government needs to plan an ASF-control strategy based on an ASF transmission mechanistic model.

Simple and rapid colorimetric detection of African swine fever virus by loop-mediated isothermal amplification assay using a hydroxynaphthol blue metal indicator

  • Park, Ji-Hoon;Kim, Hye-Ryung;Chae, Ha-Kyung;Park, Jonghyun;Jeon, Bo-Young;Lyoo, Young S.;Park, Choi-Kyu
    • Korean Journal of Veterinary Service
    • /
    • v.45 no.1
    • /
    • pp.19-30
    • /
    • 2022
  • In this study, a simple loop-mediated isothermal amplification (LAMP) combined with visual detection method (vLAMP) assay was developed for the rapid and specific detection of African swine fever virus (ASFV), overcoming the shortcomings of previously described LAMP assays that require additional detection steps or pose a cross-contamination risk. The assay results can be directly detected by the naked eye using hydroxynaphthol blue after incubation for 40 min at 62℃. The assay specifically amplified ASFV DNA and no other viral nucleic acids. The limit of detection of the assay was <50 DNA copies/reaction, which was ten times more sensitive than conventional polymerase chain reaction (cPCR) and comparable to real-time PCR (qPCR). For clinical evaluation, the ASFV detection rate of vLAMP was higher than cPCR and comparable to OIE-recommended qPCR, showing 100% concordance, with a κ value (95% confidence interval) of 1 (1.00~1.00). Considering the advantages of high sensitivity and specificity, no possibility for cross-contamination, and being able to be used as low-cost equipment, the developed vLAMP assay will be a valuable tool for detecting ASFV from clinical samples, even in resource-limited laboratories.

Risk factors of African swine fever virus in suspected infected pigs in smallholder farming systems in South-Kivu province, Democratic Republic of Congo

  • Bisimwa, Patrick N.;Dione, Michel;Basengere, Bisimwa;Mushagalusa, Ciza Arsene;Steinaa, Lucilla;Ongus, Juliette
    • Journal of Veterinary Science
    • /
    • v.22 no.3
    • /
    • pp.35.1-35.13
    • /
    • 2021
  • Background: African swine fever (ASF) is an infectious viral disease of domestic pigs that presents as a hemorrhagic fever, and for which no effective vaccine is available. The disease has a serious negative social and economic impact on pig keepers. There is limited information on the potential risk factors responsible for the spread of ASF in South Kivu. Objective: The aim of this study was to determine the potential risk factors associated with ASF infection in suspected ASF virus (ASFV)-infected pigs. Methods: We sampled whole blood from 391 pigs. Additionally, 300 pig farmers were interviewed using a structured questionnaire. Viral DNA was detected by using the real-time polymerase chain reaction technique. Results: The majority of pigs sampled, 78% (95% confidence interval [CI], 74.4-82.6), were of local breeds. Over half, 60.4% (95% CI, 55.5-65.2), were female, and most of them, 90.5% (95% CI, 87.6-93.4), were adult pigs (> 1 year old). Viral DNA was detected in 72 of the 391 sampled pigs, indicating an overall infection rate of 18.4% (95% CI, 14.5-22.4). Multivariable logistic regression analysis revealed several risk factors positively associated with ASFV infection: feeding with swill in pen (odds ratio [OR], 3.8; 95% CI, 2.12-6.77); mixed ages of pigs in the same pen (OR, 3.3; 95% CI, 1.99-5.57); introduction of new animals to the farm (OR, 5.4; 95% CI, 1.91-15.28). The risk factors that were negatively (protective) correlated with ASFV positivity were the presence of male animals and the use of an in-pen breeding system. Conclusion: Local pig farmers should be encouraged to adopt proper husbandry and feeding practices in order to increase the number of ASF-free farms.

Expression and diagnostic application of p12 protein of African swine fever virus by recombinant baculovirus (재조합 baculovirus에 의한 아프리카 돼지콜레라바이러스 p12 단백질의 발현과 진단적 적용)

  • Choi, Kang-Seuk;Choi, Cheong-up;Kim, Yong-Joo
    • Korean Journal of Veterinary Research
    • /
    • v.45 no.1
    • /
    • pp.63-70
    • /
    • 2005
  • African swine fever (ASF) is an infectious disease of domestic and wild pigs for which there is no vaccine in the world. A proper surveillance of viral activity and a timely response to ASF outbreaks depend upon the rapid diagnosis of ASF viral infection. Internationally prescribed enzyme-linked immunosorbent assay (ELISA) is a fast, sensitive test routinely used in the diagnosis of the ASF. However, inactivated whole ASF virus antigen used in this test is a tedious to prepare and has a risk of outside exposure of infectious virus by laboratory accident during the preparation. An ASF virus noninfectious recombinant antigen is a safe and easily produced alternative antigen for use in diagnostic assay. We have cloned the ORF O61R gene of the ASF virus to generate a recombinant baculovirus producing the p12 protein in insect cells under control of the polyhedrin promoter as non-fusion protein. When used in an indirect ELISA, the p12 antigen showed reactivity with all known ASF positive pig sera but not with negative pig sera. Our results indicated that the p12 protein would be one of alternative antigens for diagnosis of the ASF.

Development of an Early Diagnostic Device for African Swine Fever through Real-time Temperature Monitoring Ear-tags (RTMEs)

  • Taehyeun Kim;Minjong Hong;JungHwal Shin
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.275-279
    • /
    • 2023
  • Throughout the 20th century, the transition of pig farms from extensive to intensive commercial operations amplified the risk of disease transmission, particularly involving African swine fever (ASF). Real-time temperature monitoring systems have emerged as essential tools for early ASF diagnosis. In this paper, we introduce new real-time temperature monitoring ear tags (RTMEs) modeled after existing ear tag designs. Our crafted Pig-Temp platforms have three primary advantages. First, they can be effortlessly attached to pig ears, ensuring superior compatibility. Second, they enable real-time temperature detection, and the data can be displayed on a personal computer or smartphone application. Furthermore, they demonstrate excellent measurement accuracy, ranging from 98.9% to 99.8% at temperatures between 2.2 and 360℃. A linear regression approach enables fever symptoms associated with ASF to be identified within 3 min using RTMEs. The communication range extends to approximately 12 m (452 m2), enabling measurements from an estimated 75 to 2,260 pigs per gateway. These newly developed Pig-Temp platforms offer singifcant enhancement of early ASF detection.

Development of a multiplex qRT-PCR assay for detection of African swine fever virus, classical swine fever virus and porcine reproductive and respiratory syndrome virus

  • Chen, Yating;Shi, Kaichuang;Liu, Huixin;Yin, Yanwen;Zhao, Jing;Long, Feng;Lu, Wenjun;Si, Hongbin
    • Journal of Veterinary Science
    • /
    • v.22 no.6
    • /
    • pp.87.1-87.12
    • /
    • 2021
  • Background: African swine fever virus (ASFV), classical swine fever virus (CSFV), and porcine reproductive and respiratory syndrome virus (PRRSV) are still prevalent in many regions of China. Co-infections make it difficult to distinguish their clinical symptoms and pathological changes. Therefore, a rapid and specific method is needed for the differential detection of these pathogens. Objectives: The aim of this study was to develop a multiplex real-time quantitative reverse transcription polymerase chain reaction (multiplex qRT-PCR) for the simultaneous differential detection of ASFV, CSFV, and PRRSV. Methods: Three pairs of primers and TaqMan probes targeting the ASFV p72 gene, CSFV 5' untranslated region, and PRRSV ORF7 gene were designed. After optimizing the reaction conditions, including the annealing temperature, primer concentration, and probe concentration, multiplex qRT-PCR for simultaneous and differential detection of ASFV, CSFV, and PRRSV was developed. Subsequently, 1,143 clinical samples were detected to verify the practicality of the assay. Results: The multiplex qRT-PCR assay could specifically and simultaneously detect the ASFV, CSFV, and PRRSV with a detection limit of 1.78 × 100 copies for the ASFV, CSFV, and PRRSV, but could not amplify the other major porcine viruses, such as pseudorabies virus, porcine circovirus type 1 (PCV1), PCV2, PCV3, foot-and-mouth disease virus, porcine parvovirus, atypical porcine pestivirus, and Senecavirus A. The assay had good repeatability with coefficients of variation of intra- and inter-assay of less than 1.2%. Finally, the assay was used to detect 1,143 clinical samples to evaluate its practicality in the field. The positive rates of ASFV, CSFV, and PRRSV were 25.63%, 9.36%, and 17.50%, respectively. The co-infection rates of ASFV+CSFV, ASFV+PRRSV, CSFV+PRRSV, and ASFV+CSFV+PRRSV were 2.45%, 2.36%, 1.57%, and 0.17%, respectively. Conclusions: The multiplex qRT-PCR developed in this study could provide a rapid, sensitive, specific diagnostic tool for the simultaneous and differential detection of ASFV, CSFV, and PRRSV.

African swine fever: Etiology, epidemiological status in Korea, and perspective on control

  • Yoo, Dongwan;Kim, Hyunil;Lee, Joo Young;Yoo, Han Sang
    • Journal of Veterinary Science
    • /
    • v.21 no.2
    • /
    • pp.38.1-38.24
    • /
    • 2020
  • African swine fever (ASF), caused by the ASF virus, a member of the Asfarviridae family, is one of the most important diseases in the swine industry due to its clinical and economic impacts. Since the first report of ASF a century ago, ample information has become available, but prevention and treatment measures are still inadequate. Two waves of epizootic outbreaks have occurred worldwide. While the first wave of the epizootic outbreak was controlled in most of the infected areas, the second wave is currently active in the European and Asian continents, causing severe economic losses to the pig industry. There are different patterns of spreading in the outbreaks between those in European and Asian countries. Prevention and control of ASF are very difficult due to the lack of available vaccines and effective therapeutic measures. However, recent outbreaks in South Korea have been successfully controlled on swine farms, although feral pigs are periodically being found to be positive for the ASF virus. Therefore, we would like to share our story regarding the preparation and application of control measures. The success in controlling ASF on farms in South Korea is largely due to the awareness and education of swine farmers and practitioners, the early detection of infected animals, the implementation of strict control policies by the government, and widespread sharing of information among stakeholders. Based on the experience gained from the outbreaks in South Korea, this review describes the current understanding of the ASF virus and its pathogenic mechanisms, epidemiology, and control.

Basic reproduction number of African swine fever in wild boars (Sus scrofa) and its spatiotemporal heterogeneity in South Korea

  • Lim, Jun-Sik;Kim, Eutteum;Ryu, Pan-Dong;Pak, Son-Il
    • Journal of Veterinary Science
    • /
    • v.22 no.5
    • /
    • pp.71.1-71.12
    • /
    • 2021
  • Background: African swine fever (ASF) is a hemorrhagic fever occurring in wild boars (Sus scrofa) and domestic pigs. The epidemic situation of ASF in South Korean wild boars has increased the risk of ASF in domestic pig farms. Although basic reproduction number (R0) can be applied for control policies, it is challenging to estimate the R0 for ASF in wild boars due to surveillance bias, lack of wild boar population data, and the effect of ASF-positive wild boar carcass on disease dynamics. Objectives: This study was undertaken to estimate the R0 of ASF in wild boars in South Korea, and subsequently analyze the spatiotemporal heterogeneity. Methods: We detected the local transmission clusters using the spatiotemporal clustering algorithm, which was modified to incorporate the effect of ASF-positive wild boar carcass. With the assumption of exponential growth, R0 was estimated for each cluster. The temporal change of the estimates and its association with the habitat suitability of wild boar were analyzed. Results: Totally, 22 local transmission clusters were detected, showing seasonal patterns occurring in winter and spring. Mean value of R0 of each cluster was 1.54. The estimates showed a temporal increasing trend and positive association with habitat suitability of wild boar. Conclusions: The disease dynamics among wild boars seems to have worsened over time. Thus, in areas with a high elevation and suitable for wild boars, practical methods need to be contrived to ratify the control policies for wild boars.