• Title/Summary/Keyword: Aerospike Nozzle

Search Result 9, Processing Time 0.026 seconds

Analysis of the Characteristics of an Aerospike Pintle Nozzle in terms of Stroke and Operating Pressure

  • Kim, Jeongjin
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.4
    • /
    • pp.1-9
    • /
    • 2020
  • The characteristics of an aerospike pintle nozzle system with excellent altitude compensation were analyzed using cold air testing. It was confirmed that reducing the stroke of the aerospike nozzle is effective in increasing the thrust. However, the results of additional numerical analysis indicated that the discharge coefficient factor was significantly lower at the maximum stroke. The Vena contracta due to the cowl reduction angle decreased the effective nozzle throat area at the maximum stroke and hindered expansion. Complementing the cowl design may thus increase the efficiency of a solid-propellant rocket engine that uses the aerospike pintle nozzle system.

Flow Visualization of Flowfield Structures around an Aerospike Nozzle using LIF and PSP

  • NIIMI Tomohide;MORI Hideo;TANIGUCHI Mashio
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.75-80
    • /
    • 2004
  • Aerospike nozzles have been expected to be used for an engine of a reusable space shuttle to respond to growing demand for rocket-launching and its cost reduction. In this study, the flow field structures in any cross sections around clustered linear aerospike nozzles are visualized and analyzed, using laser induced fluorescence (LIF) of nitrogen monoxide seeded in the carrier gas of nitrogen. Since flow field structures are affected mainly by pressure ratio, the clustered linear aerospike nozzle is set inside a vacuum chamber to carry out the experiments in the wide range of pressure ratios from 75 to 200. Flow fields are visualized in several cross-sections, demonstrating the complicated three-dimensional flow field structures. Pressure sensitive paint (PSP) of PtTFPP bound by poly- IBM -co-TFEM is also applied to measurement of the complicated pressure distribution on the spike surface, and to verification of contribution of a truncation plane to the thrust. Finally, to examine the effect of the sidewalls attached to the aerospike nozzle, the flow fields around the nozzle with the sidewalls are compared with those without sidewalls.

  • PDF

Computational and Experimental Simulations of the Flow Characteristics of an Aerospike Nozzle

  • Rajesh, G.;Kumar, Gyanesh;Kim, H.D.;George, Mathew
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.1
    • /
    • pp.47-54
    • /
    • 2012
  • Single Stage To Orbit (SSTO) missions which require its engines to be operated at varying back pressure conditions, use engines operate at high combustion chamber pressures (more than 100bar) with moderate area ratios (AR 70~80). This ensures that the exhaust jet flows full during most part of the operational regimes by optimal expansion at each altitude. Aero-spike nozzle is a kind of altitude adaptation nozzle where requirement of high combustion chamber pressures can be avoided as the flow is adapted to the outside conditions by the virtue of the nozzle configuration. However, the thrust prediction using the conventional thrust equations remains to be a challenge as the nozzle plume shapes vary with the back pressure conditions. In the present work, the performance evaluation of a new aero-spike nozzle is being carried out. Computational studies are carried out to predict the thrust generated by the aero-spike nozzle in varying back pressure conditions which requires the unsteady pressure boundary conditions in the computational domain. Schlieren pictures are taken to validate the computational results. It is found that the flow in the aero-spike nozzle is mainly affected by the base wall pressure variation. The aerospike nozzle exhibits maximum performance in the properly expanded flow regime due to the open wake formation.

Design Factor Analysis of Aerospike Pintle Nozzle for Increasing Thrust in Off-Design (탈설계 조건에서 추력 증대를 위한 에어로 스파이크 핀틀 노즐의 설계인자 분석 연구)

  • Kim, Jeongjin
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.1-9
    • /
    • 2022
  • A design factor analysis was conducted to reduce the thrust reduction in the off-design, due to the driving of the aerospike pintle nozzle. The close (NPR 100) as well as the open (NPR 11) stroke were fixed, as under-expansion conditions. The pintle contour, pintle head radius (R), cowl angle (θ), and cowl exit length (L) were selected as design factors. The change in thrust was analyzed, using a verified numerical analysis technique. First, the pintle head radius and the length of the cowl exit had little influence on the thrust. The cowl angle changed the mass flow rate by affecting the effective nozzle throat area, and created a reverse pressure gradient at the cowl exit. As a result of applying the dual aerospike contour, it was confirmed that the thrust in the design-off increased by approximately 1.2%, compared to the reference case and by approximately 3.4% compared to the worst case.

Study on The heat characteristics of Resonator in Supersonic Flow (초음속 유동장에 놓인 공명관의 가열특성 연구)

  • LEE JUNGMIN;KWON MINCHAN;SHIN DONGSUN
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.43-46
    • /
    • 2004
  • This work is experimental study about a nozzle part in the aerodynamic igniter using only compressible gas. In study, constructions of the aerodynamic igniter using a supersonic nozzle and an aerospike nozzle have been introduced, and experimental results(mainly max. heating temperature characteristics) have been presented. Using of the supersonic nozzle leads to faster and higher temperature in same mass flow, and the aerospike nozzle works in wide variable range of pressure.

  • PDF

Analysis of the Flow Characteristics of Plug Nozzle for Cold Air Test with Pintle Shape and Operating Pressure (공압시험용 플러그 노즐의 핀틀 형상 및 작동압력에 따른 유동 특성 분석)

  • Kim, Jeongjin;Oh, Seokjin;Heo, Junyoung;Lee, Dohyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.3
    • /
    • pp.28-34
    • /
    • 2019
  • The thrust control calculation according to the operation of plug nozzle for cold air test and the analysis of the flow characteristics of the pintle shape and operation pressure are performed. The numerical computation was verified by comparing the flow structure and the coefficient of thrust with the experimental data. It was confirmed that the nozzle throat was formed at the design position on each pintle shape, and thrust control up to 1:8 was achieved only by the stroke change. Finally, although the aerospike nozzle is autonomous, it is unfavorable in the under_expansion condition, if it is designed for a very low nozzle pressure ratio.

Visualization of Underexpanded Jet Structure from Square Nozzle

  • Tsutsumi, Seiji;Yamaguchi, Kazuo;Teramoto, Susumu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.408-413
    • /
    • 2004
  • Numerical and experimental investigation were car-ried out to clarify the flow structure of underexpanded jet from a square nozzle. The square nozzle rep-resents one of the clustered combustors of a linear aerospike engine. From the numerical results, the three-dimensional shock wave of the underexpanded square jet was found to be composed of two shocks. One is the intercepting shock which corresponds to the shock observed in two-dimensional planar jet. The other is the recompression shock divided into two types. The expansion fans coming from the nozzle edges interact with each other at the comers of the nozzle exit, and overexpanded regions are generated. Therefore one of the two recompression shocks is formed at the comers of the nozzle exit behind the overexpanded regions. As the jet goes downstream, the overexpanded regions grow larger to coalesce at the symmetry planes. Then, the other type of the recompression shock is generated. The three-dimensional shock structure formed by the intercepting shock and the recompression shocks dominates the expansion of the jet boundary. The shock detection algorithm us-ing CFD results was developed to reveal the relation between the shock waves and the jet boundary, and it was found that the cross-sectional jet shape becomes cross-shape. The key features observed in the numerical investigation were verified by the experimental results. The shock structure at the diagonal plane was in good agreement with the experimental schlieren images. Moreover, the cross-sections visualized by the Mie scattering method confirmed that the cross-section of the jet becomes cross-shape.

  • PDF

Performance Evaluation of Hypersonic Turbojet Experimental Aircraft Using Integrated Numerical Simulation with Pre-cooled Turbojet Engine

  • Miyamoto, Hidemasa;Matsuo, Akiko;Kojima, Takayuki;Taguchi, Hideyuki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.671-679
    • /
    • 2008
  • The effect of Pre-cooled Turbojet Engine installation and nozzle exhaust jet on Hypersonic Turbojet EXperimental aircraft(HYTEX aircraft) were investigated by three-dimensional numerical analyses to obtain aerodynamic characteristics of the aircraft during its in-flight condition. First, simulations of wind tunnel experiment using small scale model of the aircraft with and without the rectangular duct reproducing engine was performed at M=5.1 condition in order to validate the calculation code. Here, good agreements with experimental data were obtained regarding centerline wall pressures on the aircraft and aerodynamic coefficients of forces and moments acting on the aircraft. Next, full scale integrated analysis of the aircraft and the engine were conducted for flight Mach numbers of M=5.0, 4.0, 3.5, 3.0, and 2.0. Increasing the angle of attack $\alpha$ of the aircraft in M=5.0 flight increased the mass flow rate of the air captured at the intake due to pre-compression effect of the nose shockwave, also increasing the thrust obtained at the engine plug nozzle. Sufficient thrust for acceleration were obtained at $\alpha=3$ and 5 degrees. Increase of flight Mach number at $\alpha=0$ degrees resulted in decrease of mass flow rate captured at the engine intake, and thus decrease in thrust at the nozzle. The thrust was sufficient for acceleration at M=3.5 and lower cases. Lift force on the aircraft was increased by the integration of engine on the aircraft for all varying angles of attack or flight Mach numbers. However, the slope of lift increase when increasing flight Mach number showed decrease as flight Mach number reach to M=5.0, due to the separation shockwave at the upper surface of the aircraft. Pitch moment of the aircraft was not affected by the installation of the engines for all angles of attack at M=5.0 condition. In low Mach number cases at $\alpha=0$ degrees, installation of the engines increased the pitch moment compared to no engine configuration. Installation of the engines increased the frictional drag on the aircraft, and its percentage to the total drag ranged between 30-50% for varying angle of attack in M=5.0 flight.

  • PDF