• Title/Summary/Keyword: Aerospace propulsion system

Search Result 386, Processing Time 0.023 seconds

A Study on the Certification Standard Analysis and Safety Assurance Method for Electric Propulsion System of the Urban eVTOL Aircraft (도심용 eVTOL 항공기 전기추진시스템 기준 분석 및 안전성 확보 방안에 관한 연구)

  • Kim, Juyoung;Yoo, Minyoung;Gwon, Hyukrok;Gil, Ginam;Gong, Byeongho;Na, Jongwhoa
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.3
    • /
    • pp.42-51
    • /
    • 2022
  • An eVTOL aircraft, which is required to operate with low pollution/low noise in urban environments, mostly use battery-powered electric propulsion systems as power sources, not traditional propulsion systems such as reciprocating or turbine engines. Accordingly, certification preparation for the electric propulsion system and securing the safety of the electric propulsion system, are important issues. In the U.S., special technical standards equivalent to FAR Part 33 were issued to certify electric engines, and in Europe, various special conditions were established to certify electric propulsion systems. Thus, in Korea, the technical standards for the electric propulsion system for eVTOL aircraft must also be prepared in line with the U.S. and Europe. In this paper, SC E-19, the technical standard of the electric/hybrid propulsion system (EHPS) in special conditions, was analyzed. Additionally, securing the safety of the electric propulsion system of the aircraft are proposed, through the collaboration of SC E-19 technical standards with the existing aircraft safety evaluation procedure ARP 4761. Finally, through a case study of the Ehang 184 electric propulsion system, it has been confirmed that the proposed safety assurance method is applicable at the aircraft level.

Doubled Thrust by Boundary Layer Control in Scramjet Engines in Mach 4 and 6

  • Mitani, Tohru;Sakuranaka, Noboru;Tomioka, Sadatake;Kobayashi, Kan;Kanda, Takeshi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.734-741
    • /
    • 2004
  • Boundary layer ingestion in airframe-integrated scramjet engines causes engine stall (“engine un start” hereafter) and restricts engine performance. To improve the unstart characteristics in engines, boundary layer bleed and a two-staged injection of fuel were examined in Mach 4 and Mach 6 engine tests. A boundary layer bleed system consisting of a porous plate, an air coolers, a metering orifice and an ON/OFF valve, was designed for each of the engines. First, a method to determine bleed rate requirements was developed. Porous plates were designed to suck air out of the Mach 4 engine at a rate of 200 g/s and out of the Mach 6 engine at a rate of 30 g/s. Air coolers were then optimized based on the bleed airflow rates. The exhaust air temperature could be cooled below 600 K in the porous plates and the compact air coolers. The Mach 4 engine tests showed that a small bleed rate of 3% doubled the engine operating range and thrust. With the assistance of two-staged fuel injection of H2, the engine operating range was extended to Ф0.95 and the maximum thrust was tripled to 2560 N. The Mach 6 tests showed that a bleed of 30 g/s (0.6% of captured air in the engine) extended the start limit from Ф0.48 to Ф1 to deliver a maximum thrust of 2460 N.

  • PDF

발사체 추진기관의 신뢰성 평가에 대한 연구

  • Cho, Sang-Yeon;Kim, Yong-Wook;Lee, Jeong-Ho;Han, Yong-Min;Oh, Seung-Hyub
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.65-71
    • /
    • 2004
  • Development of space launch system is a national project which requires massive cost and endows the pride of the nation. To acquire the successful launch, the reliability of main system and components should be needed. In addition, reliable propulsion system sways the reliability of main system and is the necessary article for the success of project. In this study, the method called "design for reliability" is introduced, which is required to develop the highly reliable propulsion system.

  • PDF

Analysis of Inverter Losses according to Switching Frequency Using Electric Motor for Aircraft (스위칭 주파수에 따른 전기 추진 항공기용 인버터 손실 분석)

  • Koo, Bon-soo;Jo, Seong-hyeon;Choi, In-ho
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.1
    • /
    • pp.32-39
    • /
    • 2021
  • Electric propulsion aircraft are being actively researched in the aviation field in recent years to solve environmental and noise problems caused by existing gas turbine engine. In particular, research on a thrust motor as a core component of an electric power propulsion system and an inverter for driving it is actively being conducted. In this paper, a motor with high specific power is selected to determine characteristics of aircraft that are sensitive to weight and volume. Power loss of the inverter is then simulated. In the simulation, the selected motor and power device were modeled using PSIM, a power electronics analysis tool. Inverter power loss according to switching frequency was then analyzed.

Thrust Analysis of Combustor Through Control of Scramjet Propulsion System (스크램제트 추진 시스템의 비행 제어를 통한 연소기의 추력 분석)

  • Ko, Hyosang;Yang, Jaehoon;Yoh, Jai ick;Choi, Hanlim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.1
    • /
    • pp.29-41
    • /
    • 2021
  • The PID controller with fin angle and thrust as control input was designed based on the aerodynamic data of scramjet system. Flight simulation following a given trajectory which strike the target point after climb and cruise with constant dynamic pressure was conducted. After that, the required thrust for the climb and cruise was calculated and the required fuel flow rate for the hydrogen fuel dual mode scramjet combustor was analyzed. The combustor analysis of this study which conducted on integrated model of independently developed inlet, combustor, nozzles and external aerodynamic models, laying the foundation for the integrated design of the air breathing hypersonic system.

Study on Performance Prediction of Electric Propulsion System for Multirotor UAVs (멀티로터 무인항공기의 전기추진계통 성능예측에 대한 연구)

  • Jeong, Jinseok;Byun, Youngseop;Song, Woojin;Kang, Beomsoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.6
    • /
    • pp.499-508
    • /
    • 2016
  • This paper describes a study of performance prediction of an electric propulsion system for multirotor UAVs. The electric propulsion system consists of motors, propellers, batteries and speed controllers, and significantly affects performance characteristics of the platform. The performance of the electric propulsion system for multirotor UAVs was predicted using an analytical model derived from the characteristics of each component, operation experiments and statistical analyses. Ground performance tests and endurance flights were performed to verify the reliability of the proposed performance prediction method. A quadrotor platform was designed to demonstrate the parcel delivery service used in the endurance flight. From the result of verification tests, it was confirmed that the proposed method has a good agreement.

Current Development Status of Propulsion System for Lunar Orbiter (달 탐사위성용 추진시스템 개발 현황)

  • Lee, Kyun-Ho;Yu, Myoung-Jong;Lee, Sang-Ryool
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.7 no.1
    • /
    • pp.56-67
    • /
    • 2009
  • From 1990s, the lunar exploration programs, suspended over 20 years after the project Apollo's first successful human landing on the Moon in 1969, have been restarted according to a revived interest in Moon. In recent, several nations progress their own lunar exploration program successfully. In this report, to investigate the technical trends of the onboard propulsion system for the lunar orbiter, technical features related to the performance of the propulsion system of the lunar orbiters developed since 1990 are surveyed. In the future, it is expected that this technical report can provide a fundamental guideline for selecting a proper type of the onboard propulsion system for the domestic lunar orbiter.

  • PDF

A Study on Trend Monitoring of a Long Endurance UAV s Gas Turbine to be Operated at Medium High Altitude

  • Kho, Seong-Hee;Ki, Ja-Young;Kong, Chang-Duk;Oh, Seong-Hwan;Kim, Ji-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.84-88
    • /
    • 2008
  • The UAV propulsion system that will be operated for long time at more than 40,000ft altitude should have not only fuel flow minimization but also high reliability and durability. If this UAV propulsion system may have faults, it is not easy to recover the system from the abnormal, and hence an accurate diagnostic technology must be needed to keep the operational reliability. For this purpose, the development of the health monitoring system which can monitor remotely the engine condition should be required. In this study, a fuzzy trend monitoring method for detecting the engine faults including mechanical faults was proposed through analyzing performance trends of measurement data. The trend monitoring is an engine conditioning method which can find engine faults by monitoring important measuring parameters such as fuel flow, exhaust gas temperatures, rotational speeds, vibration and etc. Using engine condition database as an input to be generated by linear regression analysis of real engine instrument data, an application of the fuzzy logic in diagnostics estimated the cause of fault in each component. According to study results, it was confirmed that the proposed trend monitoring method can improve reliability and durability of the propulsion system for a long endurance UAV to be operated at medium altitude.

  • PDF

Fuel Cell Powered UAV with NaBH4 as a Hydrogen Source

  • Kim, Tae-Gyu;Shim, Hyun-Chul;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.579-582
    • /
    • 2008
  • PEM Fuel cell system was designed and constructed to use as a power source of unmanned aerial vehicles(UAV) in the present study. Sodium borohydride was selected as a hydrogen source and was decomposed by catalytic hydrolysis reaction. Fuel cell system consists of a fuel cell stack, a hydrogen generation system(HGS), and power management system(PMS). HGS was composed of a catalytic reactor, micropump, fuel cartridge, and separator. Hybrid power system between lithium-polymer battery and fuel cell was developed. The fuel cell system was integrated and packaged into a blended wing-body UAV. Energy density of the total system was 1,000 $W{\cdot}hr/kg$ and high endurance more than 5 hours was accomplished in the ground tests.

  • PDF

Development Trend of Cold Gas Propulsion System of a Simulator for Maneuvering and Attitude Control Design Verification of Spacecraft (우주비행체 기동 및 자세제어 설계 검증을 위한 시뮬레이터의 냉가스 추진시스템 개발 동향)

  • Kim, Jae-Hoon;Lee, Kyun Ho;Hong, Sung Kyung;Kim, Hae-Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.1
    • /
    • pp.87-97
    • /
    • 2015
  • In general, such ground based methods are utilized to validate maneuvering and attitude control logics of a spacecraft by a simulation with a flight software at a design phase and a integrated function test with actual hardwares at a system level. Recently, varification researches using operating simulators are getting increase using compact and precise components under a ground condition. The present paper investigates and summarized the development trend of cold gas propulsion systems for the spacecraft simulators and their major performance characteristics to derive fundamental data which are necessary for a conceptual design of the simulator.