• Title/Summary/Keyword: Aerospace propulsion system

Search Result 386, Processing Time 0.025 seconds

Development Study on Variable Nozzle For Hypersonic Air Breathing Engine

  • Kojima, Takayuki;Taguchi, Hideyuki;Kobayashi, Hiroaki;Fukiba, Katsuyoshi;Sato, Tetsuya;Hatta, Hiroshi;Goto, Ken;Koyanagi, Jun;Aoki, Takuya
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.492-498
    • /
    • 2008
  • In this paper are described recent studies about variable nozzles, that are a rectangular type nozzle and an axisymmetric type nozzle, of the precooled turbojet engine(S-engine) which are developed for the demonstration of the key technologies for the propulsion system of the hypersonic airplane and the first stage propulsion of the TSTO space plane. For the rectangular nozzle, three types of C-shaped carbon/carbon composite cowls which includes subscale model of the precooled turbojet engine are fabricated and the fine attachment to the ramp is confirmed. For the firing of the S-engine, stainless steel cowl with concrete heat insulator are fabricated and tested for 20 sec. Axisymmetric variable plug nozzle which is made of C/C material is fabricated and pressurized by the cold flow test. The axisymmetric plug nozzle can be operative up to 0.57 MPa of nozzle inlet pressure.

  • PDF

Turbine Rotor-Pyrostarter Coupled Test for the Verification of Thermo-Structural Suitability of a Turbopump Turbine (터보펌프 터빈의 열구조적 적합성 검증을 위한 터빈로터-파이로시동기 연계시험)

  • Jeong, Eunhwan;Kang, Sang Hun;Hong, Moongeun;Lee, Hanggi;Lee, Soo Yong;Kim, Jinhan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.1
    • /
    • pp.65-72
    • /
    • 2014
  • Turbine rotor-pyrostarter coupled test was performed for the verification of thermo-structural suitability of a turbopump turbine. Newly developed solid propellant and design concept were used in pyrostarter development. In case of turbine rotor, rotor configuration modification and post EDM machining process are adopted in rotor manufacturing respectively for the thermal stress relief and the surface integrity improvement on the blade surfaces. In the test, combustion gas of pyrostarter was directly ejected from the nozzles and impinged on the stationary turbine rotor specimen through the identically shaped flow passage of turbopump. Three kind of thermal load - design to extreme condition - test were performed and no damages were found on the turbine rotor specimens.

Conceptual Design of Cold Gas Propulsion System of a Ground Simulator for Maneuver and Attitude Control Design Verification of Spacecraft (우주비행체 기동 및 자세제어 설계 검증을 위한 지상 시뮬레이터용 냉가스 추진시스템의 개념설계)

  • Kim, Jae-Hoon;Lee, Kyun Ho;Hong, Sung Kyung;Kim, Hae-Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.1
    • /
    • pp.98-110
    • /
    • 2015
  • Recently, a validation research of maneuvering and attitude control logics of a spacecraft under a ground condition is getting increase by using operating simulators with compact and precise components. For that, a cold gas propulsion system is generally used for maneuvering and attitude control of spacecraft ground simulators for its simplicity and a high reliability. In the present study, major design parameters of a cold gas propulsion system are derived to meet mission requirements based on conceptual design results of a simulator. And additionally, commercial components with proper specifications are selected for system assembly.

Development of System Analysis Program of Liquid Rocket Engine I (액체로켓엔진 시스템 통합 해석 프로그램 개발 1)

  • Lee, Sang-Bok;Son, Min;Seo, Jongcheol;Lim, Taekyu;Roh, Tae-Seong;Koo, Jaye;Kim, Kuisoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.4
    • /
    • pp.56-62
    • /
    • 2013
  • The system analysis and design program of the liquid rocket engine has been developed for preliminary conceptual design process. The program analyzes the engine system and obtains optimal design variables by optimization methods such as genetic algorithm for the higher specific impulse and thrust to weight ratio using given input parameters and requirements. For the users' convenience, the GUI has been offered. The 3-dimensional model for the visualization of results has been interconnected with the CATIA program. The results are expected to be applied to the design process of the space launch vehicle for the analysis and selection of the propulsion system.

Overseas Research Trends of an Electric-Pump Cycle for Application in Upper-Stage Propulsion Systems (상단 추진 시스템에 적용을 위한 전기펌프 사이클의 국외 연구 동향)

  • Ki, Wonkeun;Lee, Jaecheong;Lee, Hyoungjin;Roh, Tae-Seong;Huh, Hwanil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.1
    • /
    • pp.64-77
    • /
    • 2020
  • An electric-pump cycle, which is a propellant supply system for driving pumps of a liquid rocket engine using an electric motor, has the advantages of simple system configuration and easy control of supply flow rate and pressure. This paper investigates and analyzes the overseas research trends of the electric-pump cycle. In addition, the research and development country, performing organization, application, engine thrust, pump pressure increase, motor power, and rotation speed are summarized. Among them, the design variables of the overseas research that applied the upper-stage propulsion system with the thrust range of 0.445~2.2 kN could be used in the study of a similar electric-pump cycle in Korea.

Solar Thermal Propulsion System for Microsatellites

  • Sahara, Hironori;Shimisu, Morio;Osa, Keitaro;Matsui, Yasuhiro;Fukuda, Miho;Daisuke, Maeyama;Nakamura, Yoshihiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.318-319
    • /
    • 2004
  • This paper shows an application of single crystal metals and Single Shell Polymer Concentrator (SSPC) to Solar Thermal Propulsion (STP). Based on it, we fabricated a breadboard model of STP system (STP-BBM) for microsatellites. We also proposed Eco-Friendly End-of-Life De-Orbiting (EFELDO) by using such a high performance STP system.

  • PDF

Status and Characteristics of Unmanned Aerial Vehicle Gas Turbine Engines (무인 항공기 가스터빈 추진기관의 현황 및 특성 연구)

  • Joo, Milee;Choi, Seongman;Jo, Hana
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.2
    • /
    • pp.61-72
    • /
    • 2020
  • Performance characteristics of propulsion systems applied to UAVs that under development or completed in foreign countries were analyzed. In this study, aircraft mission and performance characteristics of ten UAVs were reviewed and compared with current available civil and military aircraft. Also performance characteristics of UAVs propulsion systems were summarized and engine design parameters were analyzed. Thrust, SFC and design parameters such as pressure ratio and bypass ratio of UAV propulsion system were compared with the current existing civil and military aircraft engines. From this study, the design parameters of the propulsion system applied to the UAV were well understood.

Preliminary Design of LEO Satellite Propulsion System (저궤도위성 추진시스템 예비 설계)

  • Yu, Myeong-Jong;Lee, Gyun-Ho;Kim, Su-Gyeom;Choe, Jun-Min
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.85-89
    • /
    • 2006
  • Propulsion System provides the required velocity change impulse for orbit transfer from parking orbit to mission orbit and three-axis vehicle attitude control impulse. New LEO Satellite propulsion system (PS) will be an all-welded, monopropellant hydrazine system. The PS consists of the subassemblies and components such as Thrusters, Propellant Tank, Pressure Transducer, Propellant Filter, Latching Isolation Valves, Fill/Drain Valves, interconnecting propellant line assembly, and thermal hardwares for operation-environment control of the PS. In this study, preliminary design process of LEO Satellite propulsion system will be summarized.

  • PDF

Development Study of A Precooled Turbojet Engine for Flight Demonstration

  • Sato, Tetsuya;Taguchi, Hideyuki;Kobayashi, Hiroaiki;Kojima, Takayuki;Fukiba, Katsuyoshi;Masaki, Daisaku;Okai, Keiichi;Fujita, Kazuhisa;Hongoh, Motoyuki;Sawai, Shujiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.109-114
    • /
    • 2008
  • This paper presents the development status of a subscale precooled turbojet engine "S-engine" for the hypersonic cruiser and space place. S-engine employs the precooled-cycle using liquid hydrogen as fuel and coolant. It has $23cm{\times}23cm$ of rectangular cross section, 2.6 m of the overall length and about 100 kg of the target weight employing composite materials for a variable-geometry rectangular air-intake and nozzle. The design thrust and specific impulse at sea-level-static(SLS) are 1.2 kN and 2,000 sec respectively. After the system design and component tests, a prototype engine made of metal was manufactured and provided for the system firing test using gaseous hydrogen in March 2007. The core engine performance could be verified in this test. The second firing test using liquid hydrogen was conducted in October 2007. The engine, fuel supplying system and control system for the next flight test were used in this test. We verified the engine start-up sequence, compressor-turbine matching and performance of system and components. A flight test of S-engine is to be conducted by the Balloon-based Operation Vehicle(BOV) at Taiki town in Hokkaido in October 2008. The vehicle is about 5 m in length, 0.55 m in diameter and 500 kg in weight. The vehicle is dropped from an altitude of 40 km by a high-altitude observation balloon. After 40 second free-fall, the vehicle pulls up and S-engine operates for 60 seconds up to Mach 2. High altitude tests of the engine components corresponding to the BOV flight condition are also conducted.

  • PDF

Study on the Fundamental Technologies of ATREX Engine

  • Sato, Tetsuya;Kobayashi, Hiroaki;Tanatsugu, Nobuhiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.665-670
    • /
    • 2004
  • This paper reviews the latest studies of the expander cycle Air Turbo Ramjet engine (ATREX) conducted in JAXA. First, a system analysis including the vehicle and trajectory was conducted to optimize the engine cycle and turbo-machine configuration. We selected the precooled turbo-jet cycle for a prototype engine using the near term technologies. Second, a system ground-firing test was conducted to verify a defrosting system for the precooler. Methanol injection with its particles atomization could compensate 80 % of pressure loss caused by the frost. Thirdly, a feasibility of carbon/carbon composites for the engine components was investigated by making complex shapes such as a heat exchanger and a plug nozzle. Basic technologies on the gas leakage, the junction and bonding were also studied. The end of the paper, some basic studies such as wind tunnel tests of a new type air inlet and a plug nozzle are described.

  • PDF