• Title/Summary/Keyword: Aerospace propulsion system

Search Result 386, Processing Time 0.025 seconds

Conceptual Design of a LOX/Methane Rocket Engine for a Small Launcher Upper Stage (소형발사체 상단용 액체메탄 로켓엔진의 개념설계)

  • Kim, Cheulwoong;Lim, Byoungjik;Lee, Junseong;Seo, Daeban;Lim, Seokhee;Lee, Keum-Oh;Lee, Keejoo;Park, Jaesung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.4
    • /
    • pp.54-63
    • /
    • 2022
  • A 3-tonf class liquid rocket engine that powers the upper stage of a small launcher and lifts 500 kg payload to 500 km SSO is designed. The small launcher is to utilize the flight-proven technology of the 75-tonf class engine for the first stage. A combination of liquid oxygen and liquid methane has been selected as their cryogenic states can provide an extra boost in specific impulse as well as enable a weight saving via the common dome arrangement. An expander cycle is chosen among others as the low-pressure operation makes it robust and reliable while a specific impulse of over 360 seconds is achievable with the nozzle extension ratio of 120. Key components such as combustion chamber and turbopump are designed for additive manufacturing to a target cost. The engine system provides an evaporated methane for the autogenous pressurization system and the reaction control of the stage. This upper stage propulsion system can be extended to various missions including deep space exploration.

Prediction of Preliminary Pogo Instability on a Space Launch Vehicle (예비설계 단계 우주발사체의 공급/추진계 모델을 이용한 포고 불안정성 예측)

  • Lee, SangGu;Sim, JiSoo;Shin, SangJoon;Seo, Yongjun;Ann, Sungjun;Song, Huiseong;Kim, Youdan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.6
    • /
    • pp.64-72
    • /
    • 2017
  • The longitudinal dynamic instability which can occur in the fueling process of a space launch vehicle is called pogo. It is caused by coupling between the fuselage and propulsion system and they would be formed as a closed-loop system. so that the amplitude of the response may increase or decrease. In this paper, a mathematical model which is applicable to the systematic pogo analysis of a general launch vehicle is developed for an example of space shuttle. The formulations are composed of the linearized second-order differential equation for the propulsion system, and of the pressure, weight displacement, and generalized displacement. Those are important parameters for pogo analysis, are derived through eigenvalue analysis. By the formulation suggested in this paper, it is expected that mathematical modeling method of the pogo system can be obtained and systematic pogo stability analysis for any launch vehicle will be enabled.

Characteristic Study of Micro-Nozzle Performance and Thermal Transpiration Based Self Pumping in Vacuum Conditions

  • Jung, Sung-Chul;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.866-870
    • /
    • 2008
  • In this study, we designed cold gas propulsion system with minimum 0.25 mm nozzle and micro-thrust measurement system to analyze flow characteristic of micro propulsion system in ambient and vacuum condition. Argon and Nitrogen are used for propellant and the result of experiments is compared with CFD analysis and theory. But there is a point where reduced scale versions of conventional propulsion systems will no longer be practical. Therefore, a fundamentally different approach to propulsion systems was taken. That is thermal transpiration based micro propulsion system. It has no moving parts such as lubricants, pressurizing system and can pump the gaseous propellant by temperature gradient only(cold to hot). We are advancing basic research of propulsion system based on thermal transpiration in vacuum conditions and had tried experiment process and theoretical access in advance. To characterize membrane of Knudsen pump, we select Polyimide material that has low thermal conductivity(0.29 W/mK) and can stand high temperature($300^{\circ}C$) for long time. And we fabricated hole diameter 1, 0.5, 0.2, 0.1 mm using precision manufacturing. Experimental results show that pressure gradient efficiency of Knudsen pump is increased to maximum 82% according to Knudsen number and thick membranes are more effective than thin membranes in transition flow regime.

  • PDF

Numerical simulation of the unsteady flowfield in complete propulsion systems

  • Ferlauto, Michele;Marsilio, Roberto
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.3
    • /
    • pp.349-362
    • /
    • 2018
  • A non-linear numerical simulation technique for predicting the unsteady performances of an airbreathing engine is developed. The study focuses on the simulation of integrated propulsion systems, where a closer coupling is needed between the airframe and the engine dynamics. In fact, the solution of the fully unsteady flow governing equations, rather than a lumped volume gas dynamics discretization, is essential for modeling the coupling between aero-servoelastic modes and engine dynamics in highly integrated propulsion systems. This consideration holds for any propulsion system when a full separation between the fluid dynamic time-scale and engine transient cannot be appreciated, as in the case of flow instabilities (e.g., rotating stall, surge, inlet unstart), or in case of sudden external perturbations (e.g., gas ingestion). Simulations of the coupling between external and internal flow are performed. The flow around the nacelle and inside the engine ducts (i.e., air intakes, nozzles) is solved by CFD computations, whereas the flow evolution through compressor and turbine bladings is simulated by actuator disks. Shaft work balance and rotor dynamics are deduced from the estimated torque on each turbine/compressor blade row.

Configuration and Ground Tests of Solar Cell and Fuel Cell Powered System for Long Endurance UAV (장기체공 무인기용 태양전지-연료전지를 활용한 동력원 구성 및 지상시험)

  • Park, Byeongseob;Kim, Hyuntak;Baek, Seungkwan;Kwon, Sejin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.4
    • /
    • pp.94-101
    • /
    • 2015
  • Each of power systems of solar cell and fuel cell were configured and validated for long endurance UAV, as the preliminary research for the integration of power systems. Solar power system consisted of solar modules fabricated by solar cells of Sunpower's C60, commercial solar MPPT controller and Li-po battery, and then was validated. The re-start characteristics of hydrogen production from $NaBH_4$ hydrolysis was validated for operating the commercial fuel cell. The average voltage drop of Li-po battery in solar power system was -2.9 V/hour. The performance of re-start characteristics of $NaBH_4$ hydrolysis was stable in sequence mode of mission profile. Each of single systems were satisfied for the proposed mission profile.

Requirement Analysis of Propulsion System for Active Anti-Ship Missile Decoy (능동형 대함 유도탄 기만기의 추진 시스템 요구 조건 분석)

  • Moon, Yongjun;Kwon, Sejin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.4
    • /
    • pp.1-9
    • /
    • 2013
  • An active anti-ship missile decoy system was designed conceptually to analyze propulsion system requirements and feasibility to use a liquid bi-propellant rocket engine. Overall mass, size, and shape were assumed referring to specifications of Nulka which was developed by US and Australia in 1990s. The propulsion system was assumed to be a 1,000 N-class $H_2O_2$/kerosene rocket engine with a pressurized feed system. A three-degree-of-freedom optimal trajectory was calculated based on the assumptions, and mass budget was designed from the calculation results. It was found that the requirements for the propulsion system is that it shall be operated more than 100 sec; it shall be re-ignitable; it shall have a throttle capability of a range from 35% to 100% when the maximum thrust at sea level is 1,000 N.

Rotorcraft Waypoint Guidance Design Using SDRE Controller

  • Yang, Chang-Deok;Kim, Chang-Joo;Yang, Soo-Seok
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.12-22
    • /
    • 2009
  • This paper deals with the State-Dependent Riccati Equation (SDRE) Technique for the design of rotorcraft waypoint guidance. To generate the flight trajectory through multiple waypoints, we use the trigonometric spline. The controller design and its validation is based upon a level 2 simulation rotorcraft model and the designed SDRE controller is applied to the trajectory tracking problems. To verify the designed guidance law, the simulation environment of high fidelity rotorcraft model is developed using three independent PCs. This paper focuses on the validation of rotorcraft waypoint guidance law which is designed by using SDRE Controller.

The Study Trend and Problems of Propulsion System in a Zero-gravity Environment (무중력 환경에서 추진기관의 문제점 및 연구 동향)

  • Kil, Gyoung-Sub;Lim, Ha-Young;Lee, Kyung-Won;Cho, In-Hyun
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.8 no.1
    • /
    • pp.96-103
    • /
    • 2010
  • The propulsion systems such as upper stages of launch vehicles, orbiters, spacecrafts have to operate in the zero gravity environment. Because the flight condition where the vehicle undergoes is different from the normal gravity state, many studies have been being in progress. Fluid behavior in the zero gravity condition is differently shown in the normal gravity state because the importance of the intermolecular force, such as adhesion, cohesion, and surface tension is enlarged. In this paper, we investigate the characteristic of fluid behavior and describe effects and problems on the liquid propulsion system due to these fluid behavior. We also check which studies are in progress in order to solve these problems.

  • PDF

Power Beaming and Its Application to Aerospace Propulsion

  • Komurasaki, Kimiya
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.881-885
    • /
    • 2008
  • Wireless energy transmission system to a Micro Aerial Vehicle is now under development. A 5.8 GHz microwave phased array antenna and rectenna array receiver have been developed. An electric motor on a circling MAV model was driven by the transmitted power. In addition, 140GHz millimeter-waves of up to 1MW was beamed to a "Microwave Rocket" and its thrusting has been successfully demonstrated.

  • PDF

Performance Characteristics of a Main Oxidizer Shutoff Valve for Liquid Rocket Engines (액체로켓엔진용 연소기 산화제 개폐밸브 성능 특성)

  • Jeong, Daeseong;Hong, Moongeun;Han, Sangyeop
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.4
    • /
    • pp.28-35
    • /
    • 2017
  • A main oxidizer shutoff valve controls the supply of the oxidizer flow into the combustion chamber of a liquid rocket engine. This shutoff valve also carries out the pre-chilling of oxidizer supply lines by permitting recycling flow for stable transient start of the engine. In the present paper, the flow tests for the recycling line of the valve were conducted in order to evaluate the cooling performance of the main oxidizer shutoff valve. In addition, cryogenic life-cycle tests were performed with an assumption of the increase of spring constant with increasing valve operating times due to ductile-brittle transition effects.