• Title/Summary/Keyword: Aerospace Reliability

Search Result 453, Processing Time 0.028 seconds

Reliability Qualification Test of a Unmanned Control Robot System for an Excavator (굴삭기용 무인조종로봇 신뢰성 보증 시험에 대한 연구)

  • Back, Seung Jun;Son, Young Kap;Kim, Jun Hee;Lee, Jong Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.4
    • /
    • pp.397-403
    • /
    • 2015
  • This paper proposes the development of a method for assessing the system reliability of an unmanned control robot system for an excavator. It then shows the results of the reliability qualification test based on the proposed method. The robot system functions to ensure the safety of the workers who control excavators in dangerous working environments, and the system reliability was calculated by integrating the reliabilities of the system components. Thus, test equipment for the three key units of the robot system were constructed and used in accelerated life testing. From the life testing results, guaranteed mean time between failures for the chosen confidence level was estimated, and the reliability qualification testing method of the robot system using small sample sizes was proposed.

Planned Depot Maintenance Interval Decision for Unmanned Aerial Vehicle through Reliability and Maintainability Based Simulation and Operating & Support Cost Analysis (신뢰도 및 정비도 기반 시뮬레이션과 운영유지 비용분석을 통한 무인항공기의 계획창정비 주기결정)

  • Sang Yeob Lee;Jun Hyun Son
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.5
    • /
    • pp.1-10
    • /
    • 2023
  • This research sought to determine the optimal cycle of Planned Depot Maintenance (PDM) for Unmanned Aerial Vehicle (UAV), and PDM through Reliability and Maintainability-based simulation and Operating and Support (O&S) cost analysis using Reliability and Maintainability analysis results. The effectiveness of the PDM was verified economically, and the optimal PDM interval that balances UAV effective operations and sustaining engineering costs was presented.

HIGH RESOLUTION IMAGE ACQUISITION MODE USING PANCHROMATIC REDUNDANT CHANNEL

  • Chang, Young-Jun;Kong, Jong-Pil;Huh, Haeng-Pal;Kim, Young-Sun;Park, Jong-Uk
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.800-803
    • /
    • 2006
  • The Space-borne electro-optical camera system, like KOMPSAT has panchromatic redundant image channel as well as primary channel in order to increase reliability of satellite system. In most case redundant channel never been used during the whole mission period. Staggered array configuration using redundant image channel and new operation mode proposed which operates primary and redundant channel simultaneously. Without new hardware design, fast electronics and system complexity, we can get 1.414 times more fine GSD image of original system and aliasing effect which corrupt high frequency information of image can be minimized. To get the more efficiency from staggered array configuration, we introduce masked pixel CCD.

  • PDF

Application of SE Management Techniques for Space Launch System Development (우주 발사 시스템 개발에 있어서의 SE 관리기법 적용)

  • Joh, Miok;Cho, Byoung-Gyu;Oh, Bum-Seok;Park, Jeong-Joo;Cho, Gwang-Rae
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.53-60
    • /
    • 2005
  • System engineering(SE) management techniques applied for space launch system development are introduced to assess the current status and address the effectiveness of these techniques. Management plans and guides are prepared for the work breakdown structure, data, configuration, interface control, quality assurance, procurement, reliability, risk and verification/validat ion. Further improvement is required for the system engineering management plan(SEMP) to merge the international cooperation into current engineering management system.

  • PDF

Technology Trends of Satellite Based Augmentation Systems (위성기반 보강항법시스템 기술 동향)

  • Jeongrae Kim;Yongrae Kim;Jongyoon Kim
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.1
    • /
    • pp.25-34
    • /
    • 2024
  • The Satellite Based Augmentation System (SBAS) improves the accuracy and reliability of user positioning by transmitting the error correction and integrity information of the global navigation satellite system signal from geostationary satellites in real time. For this reason, SBAS was designed for aircraft operations and approach procedures and is now in operational or development stages in many countries. Time has passed since the construction of SBAS and many changes have occurred in the composition of the monitoring stations and the geostationary satellites. These changes have been investigated and the current operation and development status of SBAS globally are surveyed. The development and test schedules for the transition to dual frequency multi-constellation, an important topic in SBAS, are discussed.

Dynamic Simulation and Analysis of the Space Shuttle Main Engine with Artificially Injected Faults

  • Cha, Jihyoung;Ha, Chulsu;Koo, Jaye;Ko, Sangho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.4
    • /
    • pp.535-550
    • /
    • 2016
  • Securing the safety and the reliability of liquid-propellant rocket engines (LREs) for space vehicles is indispensable as engines consist of many complex components and operate under extremely high energy-dense conditions. Thus, health monitoring has become a mandatory requirement, especially for the reusable LREs that are currently being developed. In this context, a dynamic simulation program based on MATLAB/Simulink was developed in the current research on the Space Shuttle Main Engine (SSME), a partly reusable engine. Then, a series of fault simulations using this program was conducted: at a steady state operating condition (104% Rated Propulsion Level), various simulated fault conditions were artificially injected into the simulation models for the five major valves, the pumps, and the turbines of the SSME. The consequent effects due to each fault were analyzed based on the time responses of the major parameters of the engine. It is believed that this research topic is an essential pre-step for the development of fault detection and diagnosis algorithms for reusable engines in the future.

RELIABILITY-BASED OPTIMIZATION OF AIRFOILS USING A MOMENT METHOD AND PARSEC FUNCTION (모멘트 기법과 PARSEC 함수를 이용한 에어포일 신뢰성 기반 최적설계)

  • Lee, J.;Kang, H.;Kwon, J.;Kwak, B.;Jung, K.
    • Journal of computational fluids engineering
    • /
    • v.17 no.2
    • /
    • pp.28-34
    • /
    • 2012
  • In this study, the reliability-based design optimization of the airfoil was performed. PARSEC function was used to consider the uncertainty of the aerodynamic shape for the reliability-based shape optimization of airfoils. Among various reliability analysis methods, the moment method was used to compute the probability of failure of the aerodynamic performance. The accuracy of the reliability analysis was compared with other methods and it was found that the moment method predicts the probability of failure accurately. Deterministic and reliability-based optimizations were performed for the shape of the airfoil and it was demonstrated that reliability-based optimum assures the aerodynamic performances under uncertainties of the shape of the airfoil.

Parameter Estimation and Reliability Analysis Using Bayesian Approach for Bolted Joint and O-ring Seal of Solid Rocket Motor (고체 로켓 모터의 체결 볼트와 오링에 대한 베이지안 접근법 기반 모수 추정과 신뢰성 해석)

  • Gang, Jin Hyuk;Choi, Joo Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.11
    • /
    • pp.1055-1064
    • /
    • 2017
  • Since a device such as a rocket motor requires very high reliability, a reasonable reliability design process is essential. However, Korea has implemented a design method for applying a safety factor to each component. In classic reliability analysis, input variables such as mean and standard deviation, used in the limit state function, are treated as deterministic values. Because the mean and standard deviation are determined by a small amount of data, this approach could lead to inaccurate results. In this study, reliability analysis is performed for bolted joints and o-ring seals, and the Bayesian approach is used to statistically estimate the input variables. The estimated variables and failure probability, calculated by the reliability analysis, are derived in the form of probability distributions.

Comparison among Methods of Modeling Epistemic Uncertainty in Reliability Estimation (신뢰성 해석을 위한 인식론적 불확실성 모델링 방법 비교)

  • Yoo, Min Young;Kim, Nam Ho;Choi, Joo Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.605-613
    • /
    • 2014
  • Epistemic uncertainty, the lack of knowledge, is often more important than aleatory uncertainty, variability, in estimating reliability of a system. While the probability theory is widely used for modeling aleatory uncertainty, there is no dominant approach to model epistemic uncertainty. Different approaches have been developed to handle epistemic uncertainties using various theories, such as probability theory, fuzzy sets, evidence theory and possibility theory. However, since these methods are developed from different statistics theories, it is difficult to interpret the result from one method to the other. The goal of this paper is to compare different methods in handling epistemic uncertainty in the view point of calculating the probability of failure. In particular, four different methods are compared; the probability method, the combined distribution method, interval analysis method, and the evidence theory. Characteristics of individual methods are compared in the view point of reliability analysis.

Development of design framework based on reliability analysis using MATLAB (MATLAB 을 이용한 신뢰도 기반 설계 시스템 개발)

  • Sung, Young-Hwa;Kwak, Byung-Man;Maute, Kurt
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1642-1647
    • /
    • 2007
  • The aim of this research is to implement a design framework based on reliability analysis and make it possibly used for a reliable and robust design under uncertainties. Different types of reliability methods and algorithms are programmed to explore their characteristics. In our work, RIA and the PMA are employed for formulating the reliability analysis problems. A number of reliability methods are introduced in this program such as FORM, AMV/AMV+ and MCS. Reliability analysis can be easily performed with this tool box only if a drive file is ready to run. Users need to select random design variables and define their distributions and correlation.

  • PDF