• 제목/요약/키워드: Aerospace Adhesive

검색결과 56건 처리시간 0.032초

CRUSHING CHARACTERISTIC OF DOUBLE HAT-SHAPED MEMBERS OF DIFFERENT MATERIALS JOINED BY ADHESIVE BONDING AND SELF-PIERCING RIVET

  • Lee, M.H.;Kim, H.Y.;Oh, S.I.
    • International Journal of Automotive Technology
    • /
    • 제7권5호
    • /
    • pp.565-570
    • /
    • 2006
  • The development of a light-weight vehicle is in great demand for enhancement of fule efficiency and dynamic performance. The vehicle weight can be reduced effectively by using lightweight materials such as aluminum and magnesium. However, if such materials are used in vehicles, there are often instances when different materials such as aluminum and steel need to be joined to each other. The conventional joining method, namely resistance spot welding, cannot be used in joining different materials. Self-piercing rivet(SPR) and adhesive bonding, however, are good alternatives to resistance spot welding. This paper is concerned with the crushing test of double hat-shaped member made by resistance spot welding, SPR and adhesive bonding. Various parameters of crashworthiness are analyzed and evaluated. Based on these results, the applicability of SPR and adhesive bonding are proposed as an alternative to resistance spot welding.

이종재료의 결합방법에 따른 모자형 단면부재의 충돌실험 (Crushing Test of the Double Hat-shaped Members of Dissimilar Materials by Seining Methods)

  • 이명한;박영배;김헌영;오수익
    • 한국자동차공학회논문집
    • /
    • 제13권4호
    • /
    • pp.129-134
    • /
    • 2005
  • There is a strong industrial demand for the development of light-weight vehicle to improve fuel efficiency and dynamic performance. The effective method of achieving the weight reduction is to use low-density materials such as aluminum and magnesium. In applying these materials to the vehicle, it is often required to join dissimilar materials such as aluminum and steel. However, conventional joining method, namely resistance spot welding cannot be used in joining dissimilar materials. Self·piercing rivet(SPR) and adhesive bonding is a good alternative to resistance spot welding. In this study, the impact test of double hat-shaped member made by resistance spot welding, SPR and adhesive bonding was performed. As a result, various parameters of crashworthiness were analyzed and evaluated. Also, the applicability of SPR and adhesive bonding as an alternative to resistance spot welding was suggested.

Evaluation Method of Adhesive Fracture Toughness Based on Double Cantilever Beam (DCB) Tests Including Residual Thermal Stresses

  • Yokozeki, Tomohiro;Ogasawara, Toshio
    • Advanced Composite Materials
    • /
    • 제17권3호
    • /
    • pp.301-317
    • /
    • 2008
  • The energy release rate associated with crack growth in adhesive double cantilever beam (DCB) specimens, including the effect of residual stresses, was formulated using beam theory. Because of the rotation of the asymmetric arms in the adhesive DCB specimens due to temperature change, it is necessary to correct the evaluated fracture toughness of the DCB specimens, specifically in the case of a large temperature change. This study shows that the difference between the true toughness and an apparent toughness due to the consequence of ignoring residual stresses can be calculated for a given specimen geometry and thermo-mechanical properties (e.g. coefficient of thermal expansion). The calculated difference in the energy release rates based on the present correction method is compared with that from FEM in order to verify the present correction method. The residual stress effects on the evaluation of the adhesive fracture toughness are discussed.

Experimental and numerical study on the failure of sandwich T-joints under pull-off loading

  • Nguyen, Khanh-Hung;Park, Yong-Bin;Kweon, Jin-Hwe;Choi, Jin-Ho;Shul, Chang-Won;Yang, Myung-Seog;Jun, Seung-Moon
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권2호
    • /
    • pp.229-237
    • /
    • 2012
  • In this study, the failure mechanism of sandwich-to-laminate T-joints under pull-off loading was investigated by experiment and the finite element method. A total of 26 T-joint specimens were manufactured and tested in order to investigate the effects of both adhesive thickness (0.4, 2.0, and 4.0 mm) and environmental conditions on the failure of the joints. The results showed that failure occurred mainly as intralaminar failure in the first layer of the sandwich face, which was contacted to the paste adhesive. The failure load did not significantly change with increasing adhesive thickness in both RTD (Room Temperature and Dry) and ETW (Elevated Temperature and Wet) conditions. In the case of ETW conditions, however, the failure load increased slightly with an increase in adhesive thickness. The joints tested in ETW conditions had higher failure loads than those tested in RTD conditions. In addition to the experiment, a finite element analysis was also conducted to investigate the failure of the joint. The stress inside the first ply of the sandwich face was of interest because during the experiment, failure always occurred there. The analysis results showed good agreement with the trend of experimental results, except for the case of the smallest adhesive thickness. The highest stress was predicted in the regions where initial failure was observed in the experiment. The maximum stress was almost constant when the adhesive thickness was beyond 2 mm.

EXPERIMENTAL STUDY ON PROBABILITY OF STRENGTH FOR EPOXY ADHESIVE-BONDED METALS

  • Seo, Do-Won;Lim, Jae-Kyoo;Jeon, Yang-Bae;Yoon, Ho-Cheol
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.688-693
    • /
    • 2002
  • Adhesive bonding is becoming one of the popular joining techniques in metal industries, since it has some advantages over other techniques such as welding and diffusion bonding, e.g., any dissimilar metals are easily adhesive-bonded together. In this study, the experiments were carried out in order to provide the statistical data with strength evaluation methods: tension, shear and four-point bending tests for thermoplastic epoxy resin based adhesive-bonded metal joints. We should certificate on the probability of the adhesive strength that has the tendency of brittle fracture, the adhesive bonding strength between metals with thermoplastic adhesive has the best probability at four-point bending test. The strength testing method that has higher probability is four-point bending test, shear test and tensile test in order.

  • PDF

Effect of Joint Reformation on Adhesive Strength of 6061 Aluminum Alloy to Polycarbonate Lap Structures

  • D. W. Seo;Kim, H. J.;J. K. Lim
    • International Journal of Korean Welding Society
    • /
    • 제4권1호
    • /
    • pp.53-60
    • /
    • 2004
  • Adhesive-bonded joints are widely used in the industry. Recently, applications of adhesive bonding joints have been increased extensively in automobile and aircraft industry. The strength of adhesive joints is influenced by the surface roughness, adhesive shape, stress distribution, and etc. However, the magnitude of the influence has not yet been clarified because of the complexity of the phenomena. In this study, as the fundamental research of adhesive bonding joints, the effects of adhesive shape and loading speed on bonding strength properties and durability of aluminum to polycarbonate single-lap joints were studied. To evaluate the effect of adhesive shape, several modified shapes were used, and loading speeds were varied from 0.05 to 5mm/min. As a result, the load distribution showed a brittle fracture tendency. The trigonal edged single lap and bevelled lap joints showed the higher strength than the plain single lap, trigonal single lap, joggle lap and double lap joints in same adhesive area. The fractures of trigonal single lap and trigonal edged single lap joints that had the higher strength level were shown as the mixture type of the cohesive and interfacial-failure, mostly joggle lap joints that had the lower strength level were shown as the adhesive-failure.

  • PDF

An experimental and numerical investigation on fatigue of composite and metal aircraft structures

  • Pitta, Siddharth;Rojas, Jose I.;Roure, Francesc;Crespo, Daniel;Wahab, Magd Abdel
    • Steel and Composite Structures
    • /
    • 제43권1호
    • /
    • pp.19-30
    • /
    • 2022
  • The static strength and fatigue crack resistance of the aircraft skin structures depend on the materials used and joint type. Most of the commercial aircraft's skin panel structures are made from aluminium alloy and carbon fibre reinforced epoxy. In this study, the fatigue resistance of four joint configurations (metal/metal, metal/composite, composite/composite and composite/metal) with riveted, adhesive bonded, and hybrid joining techniques are investigated with experiments and finite element analysis. The fatigue tests were tension-tension because of the typical nature of the loads on aircraft skin panels susceptible of experimenting fatigue. Experiment results suggest that the fatigue life of hybrid joints is superior to adhesive bonded joints, and these in turn much better than conventional riveted joints. Thanks to the fact that, for hybrid joints, the adhesive bond provides better load distribution and ensures load-carrying capacity in the event of premature adhesive failure while rivets induce compressive residual stresses in the joint. Results from FE tool ABAQUS analysis for adhesive bonded and hybrid joints agrees with the experiments. From the analysis, the energy release rate for adhesive bonded joints is higher than that of hybrid joints in both opening (mode I) and shear direction (mode II). Most joints show higher energy release rate in mode II. This indicates that the joints experience fatigue crack in the shear direction, which is responsible for crack opening.

Strain Transmission Characteristics of Packaged Fiber Bragg Grating Sensors for Structural Health Monitoring

  • Cho, Sung-In;Yoo, Seung-Jae;Kim, Eun-Ho;Lee, In;Kwon, Il-Bum;Yoon, Dong-Jin
    • 비파괴검사학회지
    • /
    • 제30권3호
    • /
    • pp.236-243
    • /
    • 2010
  • Fiber Bragg grating(FBG) sensor arrays can be used to monitor the mechanical behavior of the large composite structures such as wind turbine rotor blades and aircrafts. However, brittle FBG sensors, especially multiplexed FBG sensors are easily damaged when they are installed in the flexible structures. As a protection of brittle FBG sensors, epoxy packaged FBG sensors have been presented in this paper. Finite element analysis and experiments were performed to evaluate the effects of adhesives, packaging materials and the bonding layer thickness on the strain transmission. Two types of epoxy were used for packaging FBG sensors and the sensor probes were attached with various bonding layer thickness. It was observed that thin bonding layer with high elastic modulus ratio of the adhesive to packaging provided good strain transmission. However, the strain transmission was significantly decreased when elastic modulus of the adhesive was much lower than the packaged FBG sensor probe's one.

점탄성 테이프를 적용한 적층형 블레이드 기반 충격저감장치 (Development of Laminated Blade Based Shock Absorber Using Viscoelastic Adhesive Tape )

  • 최재섭;박연혁;오현웅
    • 항공우주시스템공학회지
    • /
    • 제17권2호
    • /
    • pp.86-93
    • /
    • 2023
  • 일반적으로 발사체의 페어링, 위성체 및 단 분리와 더불어 위성체의 전개형 구조물 분리 시 높은 신뢰도의 화약폭발 기반 파이로 분리장치가 주로 적용되고 있다. 이로부터 발생되는 파이로 충격은 짧은 시간에 높은 진폭의 하중이 발생함으로써, 위성 전장품 등 주요 탑재장비에 일시적 또는 영구적 손상을 유발하여 임무 실패를 초래할 수 있다. 본 연구에서는 파이로 구속분리장치의 폭발 시 전달되는 충격하중 저감을 목적으로 저강성 블레이드 기반 충격저감장치를 제안하였다. 설계의 주안점은 저강성 블레이드 적용에 따라 발사진동환경 하 구조건전성 확보에 취약한 문제점을 해결하기 위해 고댐핑 특성 구현이 가능하도록 점탄성 테이프를 이용한 적층형 구조를 적용함에 있다. 상기 충격저감장치의 설계 유효성은 낙하추를 이용한 충격시험을 통해 입증하였으며, 발사진동환경 하 구조건전성은 전개형 구조물 모사 모델을 적용한 하중조건에서의 구조해석을 통해 평가를 수행하였다.

접착제 접합된 자연섬유강화 복합재료의 파괴강도 특성에 미치는 접착제 필릿의 영향 (Effect of Spew Fillet on Failure Strength Properties of Natural Fiber Reinforced Composites Including Adhesive Bonded Joints)

  • 윤호철;최준용;김연직;임재규
    • Journal of Welding and Joining
    • /
    • 제23권6호
    • /
    • pp.67-71
    • /
    • 2005
  • This paper is concerned with a study on fracture strength of composites in an adhesive single lap joint. The tests were carried out on joint specimens made with hybrid stacked composites consisting of the polyester and bamboo natural fiber layer. The main objective of this work was to evaluate the fracture properties adjacent to adhesive bonded joint of natural fiber reinforced composite specimens. From the results, natural fiber reinforced composites have lower tensile strength than the original polyester. But tensile-shear strength of natural fiber reinforced composites with bamboo layer far from adhesive bond is as high as that of the original polyester adhesive bonded joints. Spew filet at the end of the overlap reduced the stress concentration at the bonded area. Spew fillet and position of bamboo natural fiber layer have a peat effect on the tensile-shear strength of natural fiber reinforced composites including adhesive bonded joints.