• Title/Summary/Keyword: Aerosol surface area

Search Result 59, Processing Time 0.026 seconds

Morphological control and electrostatic deposition of silver nanoparticles produced by condensation-evaporation method (증발-응축법에 의해 발생된 은(silver) 나노입자의 구조제어 및 전기적 부착 특성 연구)

  • Kim, Whidong;Ahn, Ji Young;Kim, Soo Hyung
    • Particle and aerosol research
    • /
    • v.5 no.2
    • /
    • pp.83-90
    • /
    • 2009
  • This paper describes a condensation-evaporation method (CEM) to produce size-controlled spherical silver nanoparticles by perturbing coagulation and coalescence processes in the gas phase. Polydisperse silver nanoparticles generated by the CEM were first introduced into a differential mobility analyzer (DMA) to select a group of silver nanoparticles with same electrical mobility, which also enables to make a group of nanoparticles with elongated structures and same projected area. These silver nanoparticles selected by the DMA were then in-situ sintered at ${\sim}600^{\circ}C$, and then they were observed to turn into spherical shaped nanoparticles by the rapid coalescence process. With the assistance of modified converging-typed quartz reactor, we can also produce the 10 times higher number concentration of silver nanoparticles compared with a general quartz reactor with uniform diameter. Finally, the spherical silver nanoparticles with 30 nm were electrostatically deposited on the surface of silicon substrate with the coverage rate of ~4%/hr. This useful preparation method of size-controlled monodisperse silver nanoparticles developed in this work can be applied to the various studies for characterizing the physical, chemical, optical, and biological properties of nanoparticles as a function of their size.

  • PDF

Classification of Nanoparticles by Inertial/Diffusion Filter (관성/확산필터를 이용한 나노입자의 분류기술 연구)

  • Kim, Yonggu;Lee, Sangyul;Kim, Hannah;Noh, Hakjae;Bong, Choonkeun;Kim, Daesung
    • Particle and aerosol research
    • /
    • v.11 no.2
    • /
    • pp.29-36
    • /
    • 2015
  • The purpose of this research is to find out the collection property of nanoparticle in diffusion filter to know particle size dispersion of nanomaterial using inertial force and principle of Brownian diffusion motion. We used inertial filters which are two different type and diffusion filters made by various kinds of Wiremesh and the different pieces of filter to compare with particle size distribution using NaCl particles. Finally, We made a conclusion as follows : (1) the bigger available charging volume is and the larger specific surface area of inertial filter is, the better collection efficiency is. (2) The higher wire-mesh number of filter is, the more collection efficiency of small particle is increasing because the wire of the higher Wiremesh number filter is thinner and denser. (3) The more pieces of wire-mesh filter, the more collection efficiency is increasing because it makes the residence time longer.

Effects of transition metal-doping on the properties of ZnO nanoparticles and the photocatalytic degradation of methylene blue (전이금속 도핑이 ZnO 나노분말의 특성 및 메틸렌블루 광촉매 분해 특성에 미치는 영향)

  • Chang, Han Kwon;Oh, Kyung Jun;Jang, Hee Dong;Cho, Kuk;Kim, Dong-Jin;Choi, Jin Hoon
    • Particle and aerosol research
    • /
    • v.6 no.1
    • /
    • pp.29-35
    • /
    • 2010
  • Transition metals such as V, Fe, and Ni were used to synthesize doped zinc oxide nanoparticles from mixed liquid precursors by using the flame spray pyrolysis (FSP). The effects of dopants on the powder properties such as morphology, specific surface area, crystal structure, and light adsorption were analyzed by TEM, BET, XRD, and UV-Vis diffuse reflection spectrum (DRS), respectively. The results showed that hexagonal wurtzite structured ZnO:M (M = V, Fe, Ni) nanoparticles were successfully synthesized by the FSP. The transition metal-doping resulted in the decrease in its particle size and crystallite size. The UV-vis absorption spectra of ZnO:M nanoparticles were also red-shifted. ZnO:V showed the highest MB degradation of 99.4% under the UV irradiation after 3 hrs.

Polymerization of Polyethylene Using Bimodal TiCl4/MgCl2/SBA-15/MCM-41

  • Moonyakmoon, Mattanawadee;Klinsrisuk, Sujitra;Poonsawat, Choosak
    • Particle and aerosol research
    • /
    • v.11 no.3
    • /
    • pp.87-92
    • /
    • 2015
  • MCM-41 (Mobil Composition of Matter) and SBA-15 (Santa Barbara Amorphous) were used as a supported catalyst for ethylene polymerization due to their combination of large surface area and wide range of pore size distribution. The morphology of supports was used to control the morphology of the resulting polymer. Different molar ratios of Al/Ti were used for ethylene polymerization at $60^{\circ}C$ under atmospheric pressure. The effect of different mass ratios of MCM-41/SBA-15 and 1-hexene concentration on polymerization activity and polymer properties was investigated. The catalytic activity and the crystallinity reached the highest value at Al/Ti of 480. Upon incorporation of MCM-41 and SBA-15 into $MgCl_2/TiCl_4$ catalyst, the molecular weight and crystallinity of polyethylene were enhanced. The obtained polyethylene showed melting temperature between 130 and $135^{\circ}C$. The polyethylene with replication structure of support and bimodal MWD was expected.

The Fluctuation of Marine Aerosol Number Concentrations Related with Vertical Winds (연직풍에 따른 해양성 에어러솔 수 농도 변동에 관한 연구)

  • Park, Sung-Hwa;Jang, Sang-Min;Jung, Woon-Seon;Jeong, Jong-Hoon;Lee, Dong-In
    • Journal of the Korean earth science society
    • /
    • v.33 no.3
    • /
    • pp.259-268
    • /
    • 2012
  • To investigate the fluctuation of marine aerosol number concentration at each different size with vertical winds in ocean area, aerosol particles and vertical wind components were measured in the Ieodo Ocean Research Station, which is located to 419 km southwest of Marado, the southernmost island of Korea, from 8 to 22 June 2009. The Laser Particle Counter (LPC) and ultrasonic anemometer were used to measure the number of aerosol particles and vertical wind speed. Surface weather chart, NCEP/NCAR reanalysis data and sounding data were used to analyze the synoptic condition. The distribution of aerosol number concentration had a large fluctuation of bigger particles more than 1.0 ${\mu}m$ in diameter by vertical wind speed during precipitation. The aerosol particles larger than 1.0 ${\mu}m$ in diameter increased as the wind changed from downward to upward during precipitation. The aerosol number concentration of bigger size than 1.0 ${\mu}m$ in diameter increased about 5 times when vertical velocity was about 0.4 $ms^{-1}$. In addition, the accumulation and coarse mode aerosol number concentration decreased about 45% and 92%, respectively compared to concentrations during precipitation period. It is considered that vertical wind plays an important role for the increasing of coarse mode aerosol number concentration compared to the large aerosol particles sufficiently removed by the scavenging effect of horizontal winds. Therefore, the upward vertical winds highly contribute to the formation and increase in aerosol number concentration below oceanic boundary layer.

A New Model for the Analysis of Non-spherical Particle Growth Using the Sectional Method (구간해석방법을 통한 새로운 비구형 입자성장해석 모델)

  • Jeong, Jae-In;Choi, Man-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.416-421
    • /
    • 2000
  • We have developed a simple model for describing the non-spherical particle growth phenomena using modified 1-dimensional sectional method. In this model, we solve simultaneously particle volume and surface area conservation sectional equations which consider particles' irregularities. From the correlation between two conserved properties of sections, we can predict the evolution of the aggregates' morphology. We compared this model with a simple monodisperse-assumed model and more rigorous two dimensional sectional model. For the comparison, we simulated silica and titania particle formation and growth in a constant temperature reactor environment. This new model shows a good agreement with the detailed two dimensional sectional model in total number concentration, primary particle size. The present model can also successfully predict particle size distribution and morphology without costing very heavy computation load and memory needed for the analysis of two dimensional aerosol dynamics.

  • PDF

A New Model for the Analysis of Non-Spherical Particle Growth (새로운 비구형 입자 성장 해석 모델)

  • Jeong, Jae-In;Choi, Man-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.7
    • /
    • pp.1020-1027
    • /
    • 2000
  • A simple model for describing the non-spherical particle growth phenomena has been developed. In this model, we solve simultaneously particle volume and surface area conservation sectional equations that consider particles' non-sphericity. From the correlation between two conserved properties of sections, we can predict the evolution of the aggregates' morphology. This model was compared with a simple monodisperse-assumed model and more rigorous two-dimensional sectional model. For comparison, formation and growth of silica particles have been simulated in a constant temperature reactor environment. This new model showed good agreement with the detailed two-dimensional sectional model in total number concentration and primary particle size. The present model successfully predicted particle size distribution and morphology without costing very heavy computation load and memory needed for the analysis of two dimensional aerosol dynamics.

Seasonal Deposition Characteristics of Water-soluble Ion Species in Ambient Aerosol in Iksan City (익산지역 대기에어로졸 중 수용성 이온성분의 계절별 침적 특성)

  • Kang, Gong-Unn
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.1
    • /
    • pp.56-70
    • /
    • 2013
  • Objectives: This paper aims to investigate the seasonal deposition characteristics of water-soluble ion species by comparing the deposition amount of two samples taken according to different sampling methods of deposition for ambient aerosol such as gases and particulate matters. Methods: Deposition samples were collected using two deposition gauges in the downtown area of Iksan City over approximately two weeks of each season in 2004. The type of deposition gauges consisted of two different sampling methods known as dry gauge and a wet gauge. The dry gauge was empty and used a dry PE bottle with an inlet diameter of 9.6 cm. Before the beginning of each deposition sampling, a volume of 30-50 ml distilled ionized water was added to the wet gauge to wet the bottom during the sampling period. Deposition samples were measured twice per day and analyzed for inorganic water-soluble ion species using ion chromatography. Results: The daily deposition amounts of all measured ions in the dry gauge and the wet gauge showed a significant increase when precipitation occurred, having no difference of deposition amount between in the wet gauge and in the dry gauge. By excluding two samples from rainy days during the sampling period, the mean daily deposition of all ions in dry gauge and wet gauge were $6.58mg/m^2/day$ and $18.16mg/m^2/day$, respectively. The mean deposition amounts of each ion species were higher in the wet gauge than in the dry gauge because of the surface difference of the sampling gauge, especially for $NH_4{^+}$ and ${SO_4}^{2-}$. The mean deposition amounts of $NH_4{^+}$ and ${SO_4}^{2-}$ in the wet gauge were found to be about 15.4 times and 5.2 times higher than that in dry gauge, with a pronounced difference between spring and summer, while the remaining ion species were 1.1-2.0 times higher in the wet gauge than in the dry gauge. Dominant species in the dry gauge were $Ca^{2+}$ and $NO_3{^-}$, accounting for 36.4% and 18.1% of the total ion deposition, whereas those in the wet gauge were $NH_4{^+}$ and ${SO_4}^{2-}$, accounting for 32.5% and 25.0% of the total ion deposition, respectively. Conclusion: The seasonal differences in deposition amounts of water-soluble ion species in ambient aerosol depending on the two types of different sampling methods were identified. This suggests that the removal of ambient aerosol is strongly influenced by the weather conditions of each season as well as the condition of earth's surface, such as dry ground and water.

Relationships between a Calculated Mass Concentration and a Measured Concentration of PM2.5 and Respirable Particle Matter Sampling Direct-Reading Instruments in Taconite Mines (타코나이트 광산 공정에서의 실시간 질량측정기기와 실시간 수농도의 환산에 의한 질량농도와의 연관성)

  • Chung, Eun-Kyo;Jang, Jae-Kil;Song, Se-Wook;Kim, Jeongho
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.1
    • /
    • pp.65-73
    • /
    • 2014
  • Objectives: The purposes of this study are to investigate workers' exposures to respirable particles generated in taconite mines and to compare two metric methods for mass concentrations using direct-reading instruments. Methods: Air monitorings were conducted at six mines where subjects have been exposed primarily to particulate matters in crushing, concentrating, and pelletizing processes. Air samples were collected during 4 hours of the entire work shift for similarly exposure groups(SEGs) of nine jobs(N=37). Following instruments were employed to evaluate the workplace: a nanoparticle aerosol monitor(particle size range; 10-1000 nm, unit: ${\mu}m^2/cc$, Model 9000, TSI Inc.); DustTrak air monitors($PM_{10}$, $PM_{2.5}$, unit: $mg/m^3$, Model 8520, TSI Inc.); a condensation particle counter(size range; 20-1000 nm, unit: #/cc, P-Trak 8525, TSI Inc.); and an optical particle counter(particle number by size range $0.3-25{\mu}m$, unit: #/cc, Aerotrak 9306, TSI Inc.). Results: The highest airborne concentration among SEGs was for furnace operator followed by pelletizing maintenance workers in number of particle and surface area, but not in mass concentrations. The geometric means of $PM_{2.5}$ by the DustTrak and the Ptrak/Aerotrak were $0.04{\mu}m$(GSD 2.52) and $0.07{\mu}m$(GSD 2.60), respectively. Also, the geometric means of RPM by the DustTrak and the Ptrak/Aerotrak were $0.16{\mu}m$(GSD 2.24) and $0.32{\mu}m$(GSD 3.24), respectively. The Pearson correlation coefficient for DustTrak $PM_{2.5}$ and Ptrak/Aerotrak $PM_{2.5}$ was 0.56, and that of DustTrak RPM and Ptrak/Aerotrak RPM was 0.65, indicating a moderate positive association between the two sampling methods. Surface area and number concentration were highly correlated($R^2$ = 0.80), while $PM_{2.5}$ and RPM were also statistically correlated each other($R^2$ = 0.79). Conclusions: The results suggest that it is possible to measure airborne particulates by mass concentrations or particle number concentrations using real-time instruments instead of using the DustTrak Aerosol monitor that monitor mass concentrations only.

Preparation of Nanoporous Silica Particles containing Various Pore Sizes from Silicic Acid by Spray Pyrolysis (분무열분해 공정에 의한 규산수용액으로부터 다양한 미세기공을 갖는 실리카 나노다공체 제조)

  • Kim, Sun Kyung;Lee, Chongmin;Chang, Hankwon;Jang, Hee Dong
    • Particle and aerosol research
    • /
    • v.12 no.3
    • /
    • pp.65-72
    • /
    • 2016
  • Nanoporous $SiO_2$ particles containing different pore volume and size were prepared from silicic acid by a spray pyrolysis. The pore size, pore volume and particle size could be controlled with varying the precursor concentration, reaction temperature, and amount of organic templates such as Urea and poly ethylene glycol (PEG). The pore size distribution, pore volume and specific surface area of as-prepared particles were analyzed by BET and BJH methods, and the average particle sizes were measured by a laser diffraction method. The nanoporous $SiO_2$ particles ranged $0.6-0.9{\mu}m$ in diameter were successfully synthesized and the average particle size increased as the silicic acid concentration increased. The morphology of nanoporous $SiO_2$ particles was spherical and pores ranged 1 - 40 nm in diameter were measured in the particles. In case of Urea added into silicic acid, it showed no much difference in the morphology, pore size and pore volume at different Urea concentration. On the other hand, when PEG was added, it was clearly observed that pore diameter and pore volume of the particles surface increased with respect to PEG concentration.