• Title/Summary/Keyword: Aerosol measurement

Search Result 239, Processing Time 0.021 seconds

Characterization of Particle Size Distribution of Infiltrated Secondhand Smoke through the Gap in a Single Glazed and a Secondary Glazed Window by Indoor and Outdoor Pressure Differences (실내외 압력 차에 따른 단창과 이중창의 틈새로 침투된 간접흡연의 입자 크기 분포 특성)

  • Kim, Jeonghoon;Lee, Kiyoung
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.4
    • /
    • pp.360-369
    • /
    • 2018
  • Objectives: Outdoor tobacco smoke can penetrate into the indoor environment through cracks in the building envelope. This study aimed to characterize the particle size distribution of infiltrated secondhand smoke (SHS) through the gap in a single glazed and a secondary glazed window according to pressure differences in a chamber. Methods: Two polyvinyl chloride sliding windows were evaluated for infiltration, one with a glazed window and the other with a secondary glazed window. Each window was mounted and sealed in a polycarbonate chamber. The air in the chamber was discharged to the outside to establish pressure differences in the chamber (${\Delta}P$). Outdoor smoking sources were simulated at a one-meter distance from the window side of the chamber. The particle size distribution of the infiltrated SHS was measured in the chamber using a portable aerosol spectrometer. The particle size distribution of SHS inside the chamber was normalized by the outdoor peak for fine particles. Results: The particle size distribution of SHS inside the chamber was similar regardless of window type and ${\Delta}P$. It peaked at $0.2-0.3{\mu}m$. Increases in particulate matter (PM) concentrations from SHS infiltration were higher with the glazed window than with the secondary glazed window. PM concentrations of less than $1{\mu}m$ increased as ${\Delta}P$ was increased inside the chamber. Conclusions: The majority of infiltrated SHS particles through window gap was $0.2-0.3{\mu}m$ in size. Outdoor SHS particles infiltrated more with a glazed window than with a secondary glazed window. Particle sizes of less than $1{\mu}m$ were associated with ${\Delta}P$. These findings can be a reference for further research on the measurement of infiltrated SHS in buildings.

An Effectiveness of Simultaneous Measurement of PM10, PM2.5, and PM1.0 Concentrations in Asian Dust and Haze Monitoring

  • Cho, Changbum;Park, Gilun;Kim, Baekjo
    • Journal of Environmental Science International
    • /
    • v.22 no.6
    • /
    • pp.651-666
    • /
    • 2013
  • This study introduces a novel approach to the differentiation of two phenomena, Asian Dust and haze, which are extremely difficult to distinguish based solely on comparisons of PM10 concentration, through use of the Optical Particle Counter (OPC), which simultaneously generates PM10, PM2.5 and PM1.0 concentration. In the case of Asian Dust, PM10 concentration rose to the exclusion of PM2.5 and PM1.0 concentration. The relative ratios of PM2.5 and PM1.0 concentration versus PM10 concentration were below 40%, which is consistent with the conclusion that Asian Dust, as a prime example of the coarse-particle phenomenon, only impacts PM10 concentration, not PM2.5 and PM1.0 concentration. In contrast, PM10, PM2.5 and PM1.0 concentration simultaneously increased with haze. The relative ratios of PM2.5 and PM1.0 concentration versus PM10 concentration were generally above 70%. In this case, PM1.0 concentration varies because a haze event consists of secondary aerosol in the fine-mode, and the relative ratios of PM10 and PM2.5 concentration remain intact as these values already subsume PM1.0 concentration. The sequential shift of the peaks in PM10, PM2.5 and PM1.0 concentrations also serve to individually track the transport of coarse-mode versus fine-mode aerosols. The distinction in the relative ratios of PM2.5 and PM1.0 concentration versus PM10 concentration in an Asian Dust versus a haze event, when collected on a national or global scale using OPC monitoring networks, provides realistic information on outbreaks and transport of Asian Dust and haze.

Numerical Study on the Change of PM10 Profile by Asian dust

  • Cho, Chang-Bum;Kim, Yoo-Keun;Lee, Yong-Seob;Bang, So-Young
    • Journal of Environmental Science International
    • /
    • v.16 no.5
    • /
    • pp.533-539
    • /
    • 2007
  • The research was conducted to simulate and interpret the change of $PM_{10}$ profile by Asian dust using the CALPUFF modeling system for the period April 6 through 18, 2001. The results, which are represented a daily variation of $PM_{10}$ concentration before and after Asian dust, was located between a minimum concentration of $50{\mu}g/m^3$ and a maximum concentration of $100{\mu}g/m^3$, Most concentration peaks in the $PM_{10}$ profile were shown within a level below 500 m and had a pattern that rapidly increased up the peak and decreased after the peak to 1000 m. Even though the shapes of the vertical profile during Asian dust days were similar to non-Asian dust days, no rapid change vertically was observed. In particular, the vertical profile on 1200 LST and 1800 LST was noticeably shifted to the higher concentrations, which means $PM_{10}$ in the atmosphere was changed into a vertically and horizontally heterogeneous form under the Asian dust event. Finally, it is con-firmed that the simulation result from CALPUFF might schematically sketched atmospheric $PM_{10}$ profiles and their change by Asian dust throughout the comparison with profiles of aerosol extinction coefficients, which were acquired from Lidar measurement at KGAWO.

The Study on the Quantitative Dust Index Using Geostationary Satellite (정지기상위성 자료를 이용한 정량적 황사지수 개발 연구)

  • Kim, Mee-Ja;Kim, Yoonjae;Sohn, Eun-Ha;Kim, Kum-Lan;Ahn, Myung-Hwan
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.267-277
    • /
    • 2008
  • The occurrence and strength of the Asian Dust over the Korea Peninsular have been increased by the expansion of the desert area. For the continuous monitoring of the Asian Dust event, the geostationary satellites provide useful information by detecting the outbreak of the event as well as the long-range transportation of dust. The Infrared Optical Depth Index (IODI) derived from the MTSAT-1R data, indicating a quantitative index of the dust intensity, has been produced in real-time at Korea Meteorological Administration (KMA) since spring of 2007 for the forecast of Asian dust. The data processing algorithm for IODI consists of mainly two steps. The first step is to detect dust area by using brightness temperature difference between two thermal window channels which are influenced with different extinction coefficients by dust. Here we use dynamic threshold values based on the change of surface temperature. In the second step, the IODI is calculated using the ratio between current IR1 brightness temperature and the maximum brightness temperature of the last 10 days which we assume the clear sky. Validation with AOD retrieved from MODIS shows a good agreement over the ocean. Comparison of IODI with the ground based PM10 observation network in Korea shows distinct characteristics depending on the altitude of dust layer estimated from the Lidar data. In the case that the altitude of dust layer is relatively high, the intensity of IODI is larger than that of PM10. On the other hand, when the altitude of dust layer is lower, IODI seems to be relatively small comparing with PM10 measurement.

Air Pollution in Seoul Caused by Aerosols (서울의 미세먼지에 의한 대기오염)

  • Kim, Yong-Pyo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.5
    • /
    • pp.535-553
    • /
    • 2006
  • Various aspects of air quality problems caused by aerosols in Seoul are discussed. Based on the measurement data, it was found that the general air quality in Seoul has improved during last twenty years. However, PM10 concentration in Seoul is still higher than other cities in Korea and worldwide. At Seoul, it was suggested that secondary aerosols are as important as aerosols directly emitted in Seoul or transported from outside.

A Study on the Behavior and Deposition of Acid Precipitation-Measurement of Dry Deposition in Chunchon and Seoul by Using Filter Pack Method (산성강하물의 침착량과 동태 해명에 관한 연구 - 필터팩을 이용한 춘천과 서울의 건성강하물의 농도 측정)

  • Kim, Man-Goo;Park, Ki-Jun;Kang, Mi-Hee;Hwang, Hoon;Lee, Bo-Kyung;Lee, Dong-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.1
    • /
    • pp.53-61
    • /
    • 1999
  • Acid aerosol and gas concentrations ($SO_4^{2-}$, $NO_3^-$, $HNO_3$, $SO_2$, and $NH_3$) were measured at Chunchon and Seoul, Korea using filter pack method during one year from October 1996 to september 1997. The samples were collected during 24 hours every Wednesday in a week from 10 A.M. with 10$\ell$/min of sample flow. Concentration of $HNO_3$, $SO_2$ and $NH_3$ gases showed typical seasonal variation. The $HNO_3$ showed the highest in summer and annual mean concentrations were 0.42 ppb and 0.57 ppb at Chunchon and Seoul, respectively. The $SO_2$ showed the highest in winter and annual mean concentration was 5.59 ppb at Chunchon. The $NH_3$ showed the highest in early summer and annual mean concentration were 5.15 ppb and 6.28 ppb at Chunchon and Seoul, respectively.

  • PDF

Pollution Characteristics of PM2.5 Fine Particles Collected at Gosan Site in JeJu Island during 1997~2001 (1997~2001년 제주도 고산지역 PM2.5 미세분진의 오염 특성)

  • 강창희;김원형;한진석;선우영;문길주
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.3
    • /
    • pp.263-273
    • /
    • 2003
  • P $M_{2.5}$ fine particles have been collected at the Cosan measurement station in Jeju Island, and the major water-soluble components have been analyzed in order to Investigate the aerosol compositions and pollution characteristics. The mean concentrations of the components were in the order of S $O_4$$^{2-}$> N $H_4$$^{+}$> N $O_3$$^{[-10]}$ > N $a^{+}$> $K^{+}$>C $l^{[-10]}$ >C $a^2$$^{+}$>M $g^2$$^{+}$. The major components were S $O_4$$^{2-}$, N $H_4$$^{+}$ and N $O_3$$^{[-10]}$ , whose compositions were 58%, 18% and 10% of the total ions, respectively. Most of the components showed higher concentrations in spring season, and especially $Ca^2$$^{+}$, N $O_3$$^{[-10]}$ and S $O_4$$^{2-}$ concentrations were increased 2.8, 1.9 and 1.2 times higher than the annual mean concentrations. The most parts of S $O_4$$^{2-}$ and N $H_4$$^{+}$ were distributed in fine particles below 2.1 ${\mu}{\textrm}{m}$ size, but the $Ca^2$$^{+}$, N $a^{+}$ and C $l^{[-10]}$ showed relatively higher concentrations in coarse particles. Based on the factor analysis, the P $M_{2.5}$ fine particles were considered to be largely influenced by anthropogenic sources, and followed by sea salt and soil sources. In the variations of concentrations as a function of wind direction, most components have shown higher concentrations notably as the northwesterly prevails.thwesterly prevails.

Comparison of Dustiness of Eleven Nanomaterials using Voltex Shaker Method (볼텍스쉐이커를 이용한 11개 나노물질의 분진날림 비교)

  • Lee, Naroo;Park, Jinwoo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.3
    • /
    • pp.273-282
    • /
    • 2018
  • Objectives: Dustiness of nanomaterials is considered as exposure index of essential material. Research on dustiness of nanomaterial is needed to control exposure in workplaces. Method: Dustiness measurement using vortex shaker were installed in the laboratory. Nanomaterials, 1 g, was put in the glass test tube and shaked using vortex shaker. Aerosol dispersed was measured using scanning mobility particle sizer(SMPS) and optical particle counter(OPC). Mass concentration using PVC filter and cassette was measured and TEM grid sampling was conducted. Total particle concentration and size distribution were calculated. Image and chemical composition of particles in the air were observed using transmission electron microscopy and energy dispersive X-ray spectrometer. Eleven different test nanomaterials were used in the study. Results: Rank of mass concentration and particle number concentration were coincided in most cases. Rank of nanomateirals with low concentration were not coincided. Two types of fumed silica had the highest mass concentration and particle number concentration. Indium tin oxide, a mixture of indium oxide and tin oxide, had high mass concentration and particle number concentration. Indium oxide had very low mass concentration and particle number concentration. Agglomeration of nanoparticles in the air were observed in TEM analysis and size distribution. In this study, mass concentration and particle number concentration were coincided and two index can be used together. The range of dustiness in particle number concentration were too wide to measure in one method. Conclusion: Particle number concentration ranged from low concentration to high concentration depend on type of nanomaterial, and varied by preparation and amount of nanomaterial used. Further study is needed to measure dustiness of all nanomaterial as one reference method.

Experimental and Numerical Investigation of the Effect of Load and Speed of T-GDI Engine on the Particle Size of Blow-by Gas and Performance of Oil Mist Separator (T-GDI 엔진의 속도 및 하중이 블로우바이 가스의 오일입자 크기와 오일분리기 성능에 미치는 영향에 대한 실험 및 수치적 연구)

  • Jeong, Soo-Jin;Oh, Kwangho
    • Journal of ILASS-Korea
    • /
    • v.25 no.4
    • /
    • pp.162-169
    • /
    • 2020
  • The worldwide focus on reducing the emissions, fuel and lubricant consumption in T-GDI engines is leading engineers to consider the crankcase ventilation and oil mist separation system as an important means of control. In today's passenger cars, the oil mist separation systems mainly use the inertia effect (e.g. labyrinth, cyclone etc.). Therefore, this study has investigated high efficiency cylinder head-integrated oil-mist separator by using a compact multi-impactor type oil mist separator system to ensure adequate oil mist separation performance. For this purpose, engine dynamometer testing with oil particle efficiency measurement equipment and 3D two-phase flow simulation have been performed for various engine operating conditions. Tests with an actual engine on a dynamometer showed oil aerosol particle size distributions varied depending on operating conditions. For instance, high rpm and load increases bot only blow-by gases but the amount of small size oil droplets. Submicron-sized particles (less than 0.5 ㎛) were also observed. It is also found that the impactor type separator is able to separate nearly no droplets of diameter lower than 3 ㎛. CFD results showed that the complex aerodynamics processes that lead to strong impingement and break-up can strip out large droplets and generate more small size droplets.

Comparison of Nitrogen Dioxide Retrieved by MAX-DOAS and OMI measurements in Seoul (지상원격측정 MAX-DOAS 시스템과 위성 OMI센서로 서울에서 산출된 이산화질소 층적분농도의 비교연구)

  • Lee, Hanlim
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.2
    • /
    • pp.235-241
    • /
    • 2013
  • $NO_2$ vertical column densities were retrieved via ground based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements for the first time for 6 months over the spring season in 2007 and 2008 in Seoul, one the megacities in the Northeast Asia. The retrieved $NO_2$ vertical column densities were compared with those obtained from space borneOzone Monitoring Instrument (OMI). Over the entire measurement period, the $NO_2$ vertical column densities measured by MAX-DOAS ranged from $1.0{\times}10^{15}molec{\cdot}cm^{-2}$ to $6.0{\times}10^{16}molec{\cdot}cm^{-2}$ while those obtained by OMI ranged $1.0{\times}10^{15}molec{\cdot}cm^{-2}$ to $7.0{\times}10^{16}molec{\cdot}cm^{-2}$. The correlation coefficient between $NO_2$ vertical column densities obtained from MAX-DOAS and OMI is 0.73 for the entire measurement period whereas the correlation coefficient of 0.85 is found for the dates under the clear sky condition. The cloudy condition is thought to play a major role in increase in uncertainty of the retrieved OMI $NO_2$ vertical column densities since air mass factor may induce high uncertainty due to the lack of cloud and aerosol vertical distribution information.